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We are at the very beginning of time for the human race. It is 

not unreasonable that we grapple with problems. But there are 

tens of thousands of years in the future. Our responsibility is to 

do what we can, learn what we can, improve the solutions, and 

pass them on. 

 - Richard Feynman  



 
iii 

 

Dedication 

 

 

 

 

 

 

 

 

 

To the world 

 

 

 

 

 

 

 

 

 

  



 
iv 

 

Acknowledgements 

It must have been a warm November afternoon in Florida when on our way from Orlando to 

Miami after a conference Bing asked us to urgently make a stop to go to a restroom. After 

pulling over at some random building in a rush, Bing went inside and she returned moments 

later to the car with the remark that we had accidentally stopped by a fashion model agency! 

Within a few femtoseconds Erdem, Reza, Xiaodong and I had jumped off our car seats and ran 

through the building doors to check out the models, only to find ourselves in front of the 

surprised faces of a large number of buttoned-up employees of what turned out to be a … bank. 

 There were memorable moments like this one that made the everyday life of a student 

pursuing a Doctor of Philosophy a rather wonderful experience. The first person to be 

acknowledged of course is my advisor, Tom Katsouleas, who maintained a rather joyful 

atmosphere in our research group and inspired us to produce great research results by getting 

the best out of every one of us. I will never forget my first interaction with Tom back in the fall 

of 2003 when as an aspiring young scientist who had just arrived at the University of Southern 

California (USC) I walked into his office and asked him to describe to me some of the research he 

was involved with. I had never heard the words “plasma accelerators” until that moment of my 

life and, truth be told, I did not understand a single thing of what he explained that evening of 

what seemed to me – at the time – a very obscure field of physics.  

 Walking1 on my way back home after this meeting, the words of the great artist Pablo 

Picasso kept ringing in my head: “I am always doing that which I cannot do, in order that I may 

learn how to do it”. I decided to embrace this philosophy and joined Tom’s group hoping that 

                                                             
1
 Oddly enough, I managed to live without a car in Los Angeles until 2 years later. 



 
v 

 

this was the best way for me to gain the most knowledge; that turned out to be – in retrospect – 

a very wise choice. After five exciting years I am graduating from the group having analyzed 

millions of experimental data points, having run thousands of simulations, having derived 

countless equations, and having made more good friends that I could have ever hoped for, 

ultimately experiencing a personal adventure of the greatest magnitude. During this unique 

process my understanding for the field of plasma accelerators and for the subject of physics in 

general has grown exponentially, the collaboration with other physicists allowed me to produce 

some very interesting scientific results, and Tom turned out to be a great advisor and one of the 

few people on the planet that no person could ever possibly dislike. Such is the aura of Tom that 

most people are grateful to meet such an individual once in their lives, while we lucky enough to 

be around him for 5 years. So, thank you, Tom. 

 The work presented in this dissertation would not have had its current form without the 

contributing help of many individuals. Patric Muggli, with who we frequently left our homes 

back in Los Angeles in order to visit the Brookhaven National Lab (BNL) and conduct our 

experiments, has had an indelible impact in shaping my way of scientific thinking. Given the fact 

that we were spending almost two months every year at BNL, we probably had more dinners 

together (since we were eating out every day) than with our girlfriends. We managed to cover 

pretty much every possible topic of discussion during those trips, ranging from Schrödinger’s cat 

and Quantum Chromodynamics to European constitutions and life in tropical islands. Above all 

though, he has been very pleasant to work with in experiment upon experiment, always having 

time to listen and investigate any research issue we might have been struggling with. 

 Most of the experimental data presented in this dissertation were recorded at the 

Accelerator Test Facility (ATF) at BNL. Many thanks need to go to the facility director, Vitaly 



 
vi 

 

Yakimenko, who managed to efficiently lead the group of scientists and staff at ATF into helping 

us to conduct the experiments as smoothly as possible2. He also brought forth a lot of fresh 

ideas and solutions to our problems which we would have never imagined on our own. I would 

also like to warmly thank the rest of the people at the ATF who made all these experiments a 

reality: Igor Pogorelsky, Igor Pavlishin, Karl Kusche, Daniil Stolyarov, Marcus Babzien, along with 

Samer Banna and Adam Lichtl for interesting discussions. Last, but not least, Wayne Kimura 

from STI Optronics has been a wonderful collaborator and generous enough to allow us to 

continuously use his wide range of equipment. 

 Another large part of my experimental experience was acquired at the Pulsed Power 

Laboratory here at USC under the kind supervision of Martin Gundersen. I worked endless hours 

with his student, Jessica Hao Chen, trying to analyze, decode and explain the mysterious yet 

fascinating world of plasma discharges. It was a pleasure to work and discuss with her every 

single time, even if at times nothing was working properly. We became good friends outside the 

lab and she has provided to me a unique authentic look into the Chinese culture. 

 The University of Southern California overall has provided me with a very comfortable 

and pleasant working environment to develop world-class research. Special mention needs to go 

to the USC machine and glass shops that constructed several key elements for my experiments, 

as well as to the USC Supercomputer Cluster (HPCC) that made possible the simulations of the 

complex interactions between trillions of particles and fields in one of the fastest computers in 

the world. I am certain that Isaac Newton would have been proud to see the incredible results 

of his second law of motion applied to our systems. 

                                                             
2
 Yet he repeatedly failed to convince us to bring our bathing suits to Long Island. 



 
vii 

 

 Probably the second most important contribution to the life of a Ph.D. student (after the 

advisor) is the interaction with the other students in the research group. To this regard, I was 

blessed to work with a unique array of personalities and philosophies from all over the world: 

Erdem Oz, Reza Gholizadeh, Wang Xiaodong, Bing Feng, Xiaoying Li, Chris Fenton, Ali Ghalam, 

Suzhi Deng and Brian Allen. Whether it was matters of science (like evaluating an impossible 

integral, following an electron trajectory in the plasma, or disproving the conservation of 

energy3), or matters of life (like driving for 8 hours in the middle of the night to Los Angeles after 

an exhausting hike at Grand Canyon during a hot summer day, philosophizing about the 

existence of aliens under the Yerkes astronomical observatory in Lake Geneva, or witnessing the 

ingenious flash-forwards in Lost), or both (like estimating on our way to Las Vegas that the earth 

would slightly slow down if all humans decided to start walking westwards), I would like to thank 

them for being such a great company all these years during my adventure. 

 I also feel that I should thank the people I worked with at the summer school on particle 

accelerators, with who we had some of the best two weeks during those intense studies at 

Ithaca which went on from morning till after midnight. Among others, we bonded very well with 

the marathon-runner Diktys Stratakis, the warm Brazilian Karen Fiuza and the awesome Matt 

Leone. It felt weird one day to calculate together the betatron frequencies and the next one to 

get soaked in the thunderous waters of the Niagara Falls. I am happy that we have stayed in 

contact and we meet again every once a while at the conferences. 

 Aside from those people that where directly related to my research, a number of other 

people influenced my life during the Ph.D. years. First of all it was my father, my mother and my 

brother that supported my decision to come to United States for such an extended period of 

                                                             
3
 This is not meant to be a joke. For example, the total amount of dark energy increases as it smoothly fills 

the space that is created through the expansion of the universe – see also Noether’s theorem. 



 
viii 

 

time and have always been there for me when I needed them. I am not sure when I was born 27 

years ago whether my parents imagined that I would become the first doctor among our 

extended family (especially in a field that didn’t even exist at the time). Furthermore, my 

companion in life, Dora, has always followed my steps and trusted in me, even when she had to 

move not just between zip codes but between whole continents for us to be together. Her 

support through all these years has surpassed my wildest expectations, and I will probably never 

be able to return her kindness in full. 

 I want to wholeheartedly thank my housemates, Andrew Yick and Rajay Kumar, for 

managing to turn an otherwise dull apartment into a fun and lively place. Ever since our first 

Quantum Mechanics class (where on my sight of Andrew I exclaimed “this is exactly the kind of 

person I could never relate to”), we went to graduate school together, we lived together and we 

earned our doctorates together. Andrew and I shared a special passion for technology and 

science that allowed us to work miracles with our class projects, our home theater system and 

our gadgets, a situation I will probably never encounter again in my life. I also need to thank the 

first non – Greek person that I became a close friend with, Yao Wen, with who the 3 am trips to 

late-night eateries and our movie-going experience at the dodgy University Village theaters 

became a regular thing. 

 The Greek community in USC and around Los Angeles in general has had a great impact 

on making California not look totally foreign to my eyes. Sotiris Zogopoulos took the time to first 

introduce me to the tricks of living in the US, while Costas Christodoulou and Violetta Ettare 

helped me tremendously during my first few months of settling down here. Dimitrios Pantazis 

was always available for a chat or just to hang out, and with Fragiskos Papadopoulos we went to 

almost every possible movie and movie theater in the greater Los Angeles area. With Stavros 



 
ix 

 

Gonidakis we shared a lot of interesting discussions as well as the unforgettable jet-ski ride on 

the crystal-clear waters of Paradise Island in the Bahamas (which also gave me an unforgettable 

whole body skin burn). Melania Apostolidou and Nikos Zygouras were always fun to hang out 

with and to share our thoughts on the past, present and future. Finally, our love for convertible 

cars between me and Panagiotis Galiotos led to one of the most exciting day road trips of my 

life: from Los Angeles to Las Vegas, with the hood down both ways for the whole drive, driving 

in the serene desert landscape in the middle of the summer. Nothing compares to experiencing 

a full sunset and a full sunrise with the wind blowing at 70 mph (we were back by 9am the next 

morning just in time to go the lab without anyone noticing). 

 I also wish to thank my professors and the members of my qualifying exam and defense 

committees, Aluizio Prata, Stephen Haas, Werner Däppen, John O’ Brien, Armand Tanguay and 

William Steier. They all transferred some part of their wisdom to me one way or another 

through homework problems, stories, suggestions and constructive criticism.  

My guess is that people tend not to thank deceased persons in their dissertation 

acknowledgements; however I will have to break that rule and salute the late Richard Feynman, 

to my eyes the archetypal physicist. It was as if he was still alive when I was reading his books, 

listening to his derivations or watching his masterful lectures. His poster always stood on the 

wall of my desk and in the darkest moments of my Ph.D., an inspirational story from the master 

was the best cure to get me out of the dead-ends and put me back on track with real physics. He 

was the last true genius of our time. 

There is an old African proverb that says “If you want to go quickly, go alone. If you want 

to go far, go together”.  The work that is described in the following pages of this dissertation 

would not have had its present form if it weren’t for the 48 people that are acknowledged in this 



 
x 

 

section. From the bottom of my heart, I thank you all again for sharing with me the greatest 

adventure in life: the intoxicated feeling of being the first person in the world to discover 

something for the first time. 



 
xi 

 

Table of Contents 

Epigraph ii 

Dedication iii 

Acknowledgements iv 

List of Figures xiv 

Abstract xxi 

Chapter 1 Introduction 1 
1.1 Physics and Particle Accelerators ............................................................. 1 
1.2 Plasma Accelerators ................................................................................. 5 

1.2.1 Basic Principles ............................................................................ 5 
1.2.2 Progress of Plasma Accelerators................................................... 8 

1.3 Present Challenges for PWFAs and Scope of the Dissertation ................. 11 
1.3.1 Future Collider Design Requirements ......................................... 11 
1.3.2 Roadmap to a Plasma-Based Collider ......................................... 12 

1.4 Chapter Conclusions .............................................................................. 15 

Chapter 2 PWFA Linear Theory 17 
2.1 Longitudinal Wakefields ......................................................................... 18 

2.1.1 Basic Equations .......................................................................... 18 
2.1.2 Transverse Component .............................................................. 19 

2.2 Transverse Wakefields ........................................................................... 20 
2.2.1 Focusing..................................................................................... 21 
2.2.2 Emmitance Balancing in the Linear Regime ................................ 22 

2.3 Transformer Ratio .................................................................................. 24 
2.3.1 Physical Interpretation ............................................................... 24 
2.3.2 Achieving Large Transformer Ratios ........................................... 25 

2.4 Energy Transfer ...................................................................................... 26 
2.4.1 Driving Efficiency ....................................................................... 26 
2.4.2 Transverse Efficiency.................................................................. 28 
2.4.3 Efficiency vs Transformer Ratio .................................................. 30 

 
 
 
 
 



 
xii 

 

2.5 Beam Loading ........................................................................................ 33 
2.5.1 Longitudinal Beam Loading ........................................................ 34 
2.5.2 Reverse Ramped Bunch ............................................................. 36 
2.5.3 Transverse Beam Loading........................................................... 37 
2.5.4 Transverse Energy Spread .......................................................... 42 

2.6 Chapter Conclusions .............................................................................. 45 

Chapter 3 Plasma Sources 46 
3.1 Overview ............................................................................................... 46 

3.1.1 Gas Jets and Metal Vapors ......................................................... 46 
3.1.2 Capillary Discharge Plasmas ....................................................... 47 

3.2 Spectral Diagnostics ............................................................................... 49 
3.2.1 Typical Spectroscopic Methods .................................................. 49 
3.2.2 Stark Broadening of Hydrogen Lines ........................................... 51 

3.3 Dependence of the Plasma Density on the Capillary Parameters ............ 54 
3.3.1 The Effect of Neutral Gas Pressure ............................................. 54 
3.3.2 The Effect of the Capillary Length ............................................... 56 
3.3.3 The Effect of the Charging Voltage ............................................. 58 
3.3.4 The Effect of the Capillary Tube Diameter .................................. 59 
3.3.5 The Effect of the Hollow Electrode Inner Diameter..................... 60 

3.4 Variation of the Plasma Density along the Length of the Capillary .......... 61 
3.5 Variation of the Plasma Density with Time ............................................. 63 
3.6 Chapter Conclusions .............................................................................. 65 

Chapter 4 High-gradient Acceleration of a Trailing Electron Bunch 67 
4.1 Previous Work ....................................................................................... 68 
4.2 Experimental Setup and Diagnostics ...................................................... 69 

4.2.1 Coherent Transition Radiation Diagnostics ................................. 70 
4.2.2 Plasma Density Diagnostics ........................................................ 72 

4.3 Plasma Interaction Results ..................................................................... 74 
4.3.1 Double Bunch Interaction .......................................................... 74 
4.3.2 Single Bunch Interaction ............................................................ 77 
4.3.3 Plasma Density Scan................................................................... 78 

4.4 Chapter Conclusions .............................................................................. 80 

Chapter 5 Multibunch Schemes and Simulations 81 
5.1 Multibunch Schemes.............................................................................. 81 

5.1.1 Enhancing the Wakefield............................................................ 83 
5.1.2 Enhancing the Transformer Ratio ............................................... 85 
5.1.3 Enhancing the Efficiency ............................................................ 88 

5.2 Meter-scale Simulations of a Multibunch Accelerator ............................ 90 
5.2.1 Multibunch Emmitance Balancing .............................................. 91 
5.2.2 Simulation Results...................................................................... 92 

5.3 Multiple Drive Bunches in the Blowout Regime ...................................... 95 
5.4 Chapter Conclusions .............................................................................. 98 



 
xiii 

 

Chapter 6 Multibunch Experiments 100 
6.1 Resonant Wakefield Excitation with IFEL .............................................. 101 

6.1.1 Motivation and Theoretical Background ................................... 101 
6.1.2 Experimental Setup and Simulations ........................................ 103 
6.1.3 Diagnostics of the Multibunched Electron Beam ...................... 108 

6.2 Generation of Microbunch Trains by Masking Chirped Beams .............. 111 
6.2.1 Mask Method .......................................................................... 112 
6.2.2 Beam Diagnostics ..................................................................... 115 

6.3 Beam-Plasma Interactions Using the Mask ........................................... 117 
6.3.1 Predicted Response ................................................................. 118 
6.3.2 Experimental Data ................................................................... 120 

6.4 Chapter Conclusions ............................................................................ 122 

Chapter 7 Conclusions 124 
7.1 Summary of the Results ....................................................................... 124 
7.2 Future Work ........................................................................................ 126 
7.3 Epilogue ............................................................................................... 128 

Bibliography 130 

Appendix A PWFA Linear Theory 143 
A.1 Impulse Response of a Plasma ............................................................. 143 
A.2 The Density Perturbation Response ..................................................... 146 
A.3 The Electric Field Perturbation Response ............................................. 147 
A.4 Bi-Gaussian Bunches ............................................................................ 151 
A.5 Optimal Plasma Density for bi-Gaussian Electron Drivers ..................... 153 

Appendix B Upper Limits to the Transformer Ratio 157 
B.1 Symmetric Bunches ............................................................................. 157 
B.2 Asymmetric Bunches............................................................................ 159 

Appendix C Coherent Transition Radiation from an Electron Bunch 161 
C.1 Transition Radiation from a Single Electron .......................................... 161 
C.2 Coherent Radiation from N electrons ................................................... 163 
C.3 The Bunch Form Factor in a more Specific Case .................................... 165 
C.4 CTR Interferometry .............................................................................. 166 

Appendix D ThemOsiris Simulation Code 169 
D.1 Analytical Formulation ......................................................................... 169 
D.2 Sample Code ........................................................................................ 172 

Appendix E Publication List 183 
 



 
xiv 

 

List of Figures 

Figure 1.1: The Livingston curve shows the progress of the energy of various accelerators 
with time. From [138]. .............................................................................................. 2 

Figure 1.2: The main physical picture of a plasma accelerator. A relativistically moving 
electron beam or laser pulse is moving to the right inside a uniform plasma. 
The electric field of the driver displaces the light plasma electrons, which are 
then drawn back on axis from the static ions, setting up an electron density 
oscillation. The corresponding electric field that is generated on axis is plotted 
in the bottom. ........................................................................................................... 6 

Figure 2.1: Left: Transverse dependence ( )R r of the longitudinal wakefield for 

transversely Gaussian bunches. Right: The on-axis transverse component of 
the longitudinal wakefield (0)R . The two asymptotic expressions for extreme 

values are also plotted here. ................................................................................... 20 

Figure 2.2: Transverse focusing dependence for a Gaussian distribution, useful for 
calculating the emmitance that balances the plasma’s transverse focusing 
force. ...................................................................................................................... 23 

Figure 2.3: Transverse efficiency of a Gaussian bunch (beam width 2 p rk  ) and of a flat-

top bunch (beam width 
pk  ). ................................................................................ 29 

Figure 2.4: Transformer ratio and driving efficiency of a single square bunch as a function 
of the normalized bunch width 

pk w . The results are compared with the 

transformer ratio and efficiency of a Gaussian bunch with normalized width 

2 p zk  . The transformer ratio for the Gaussian is defined at 1σ. .......................... 31 

Figure 2.5: Longitudinal beam loading efficiency (left) and fractional longitudinal energy 
spread (right) of a square bunch accelerated by an external wakefield as a 
function of the normalized bunch length pk w , the phase w  of the bunch in 

the wake, and the number of particles in the bunch (related to the ratio 

   0 0 0 00 / 0w wp E R E R ). .......................................................................................... 35 

Figure 2.6: The efficiency, accelerating field and the relative number of particles 
accelerated for a ramped witness bunch in a sinusoidal wakefield as a function 
of its position relative to the external wakefield. The longitudinal energy 
spread is zero for this specially shaped bunch. ........................................................ 37 

file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225646
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225646
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225647
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225647
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225647
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225647
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225647
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225647
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225648
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225648
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225648
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225648
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225649
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225649
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225649
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225650
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225650
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225651
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225651
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225651
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225652
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225652
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225652
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225652
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225653
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225653
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225653
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225653


 
xv 

 

Figure 2.7: Beam loading for a transversely Gaussian witness bunch of spot size 
w  in the 

presence of an external wave of amplitude 
0E  created by transversely 

Gaussian bunches of spot size 
0 . The wake amplitude left behind by the 

witness bunch alone is 
wE . The different colored curves correspond to 

narrower witness bunches. The curves for 3 different values of 
0pk   are 

plotted in this figure. ............................................................................................... 41 

Figure 2.8: Fractional transverse energy spread for a longitudinally square (of width 
pk w ) 

and transversely Gaussian witness bunch (of spot size 
w ) in the presence of 

an external wave of amplitude 
0E  created by transversely Gaussian bunches 

of spot size 
0 . The wake amplitude left behind by the witness bunch alone is 

,w after wE E . The differently colored curves correspond to narrower witness 

bunches. The dashed curves correspond to bunch width / 4pk w  , while the 

solid curves correspond to / 8pk w  . .................................................................... 44 

Figure 3.1: Experimental setup layout for the collection of the plasma light for the ablative 
discharges. Source: Daniil Stolyarov, BNL. ............................................................... 50 

Figure 3.2: High-density time-integrated hydrogen plasma discharge spectrum. The 
absorption line around 590 nm is attributed to the molybdenum ends of the 
electrodes. .............................................................................................................. 51 

Figure 3.3: Photograph of the hydrogen capillary discharge at USC. Source: Jessica Hao 
Chen. ...................................................................................................................... 52 

Figure 3.4: The plasma density as a function of the linewidth of the Hα line for different 
temperatures. The plasma density is in units of cm-3 and the linewidth in units 
of nm. ..................................................................................................................... 53 

Figure 3.5: Normalized spectra recorded for increasing neutral hydrogen pressures. The 
right peak is the Hα line and the left peak is the Hβ line. ........................................... 55 

Figure 3.6: The plasma density for different capillary lengths as a function of pressure. 
“New pulser” refers to shots made after some slight modifications to the 
power supply unit. The charging voltage was 60 kV and the capillary diameter 
0.6 mm.................................................................................................................... 56 

Figure 3.7: The plasma temperature for various capillary lengths. “New pulser” refers to 
shots made after some slight modifications to the power supply unit. The 
charging voltage was 60 kV and the capillary diameter 0.6 mm. .............................. 57 

Figure 3.8: The plasma density as a function of the neutral gas pressure for three different 
charging voltages. The capillary length is 20 mm and the diameter 0.6 mm. ............ 58 

file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225654
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225654
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225654
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225654
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225654
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225654
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225655
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225655
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225655
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225655
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225655
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225655
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225656
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225656
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225657
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225657
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225657
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225658
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225658
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225659
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225659
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225659
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225660
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225660
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225661
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225661
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225661
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225661
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225662
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225662
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225662
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225663
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225663


 
xvi 

 

Figure 3.9: The dependence of the plasma density as a function of pressure for 3 different 
capillary tube diameters. The capillary lengths are 20 mm and the charging 
voltage 60 kV. ......................................................................................................... 60 

Figure 3.10: Plasma density in a 16 mm capillary as a function of pressure for two 
different capillary diameters. Two different types of electrodes (flat and 
hollow) were also tested. 15 psi≈1 atm. .................................................................. 61 

Figure 3.11: Plasma density along the capillary axis for a 60 kV discharge in a 17 mm long 
capillary at 1 atm of pressure. The error bars indicate 1-σ variations over 10 
discharges. .............................................................................................................. 62 

Figure 3.12: Plasma density as a function of time for different discharge parameters. The 
plasma temperature is assumed fixed at 2 eV for this density range. Two 
different data sets where collected for 100 Torr pressure and 20 kV charging 
voltage, separated by one day in time. The measurements become noisy at 
later times where the light emitted from the plasma is weak. ................................. 64 

Figure 4.1: Layout of the double-bunch PWFA experimental setup. Figure by W. Kimura. ......... 69 

Figure 4.2: Example of three different double bunch energy spectra taken many minutes 
apart, indicating the stability of the beam break-up. ............................................... 70 

Figure 4.3: Experimental setup of the CTR interferometry diagnostic for the double-bunch 
experiment. Figure by W. Kimura. ........................................................................... 71 

Figure 4.4: CTR interferometry diagnostic for the single bunch (left) and for both bunches 
(right). The blue circles indicate experimental data, while the solid red line 
indicates the model fit. Figure by W. Kimura. .......................................................... 72 

Figure 4.5: Plasma density diagnostic for the double-bunch experiment. The Stark 
broadening of the Hα line was used to identify the density in the first μs (solid 
line), after which the density was extrapolated assuming exponential diffusion. 
The two dashed lines indicate the density dependence for two different time 
constants. ............................................................................................................... 73 

Figure 4.6: Experimental and simulated energy spectra of the double-bunch beam after 

the 6 mm-long capillary discharge at 41015 cm-3 plasma density (left column), 
and at 1x1016 cm-3 density (right column): a,f) raw energy spectrum without 
plasma; b,g) raw energy spectrum with plasma on; c,h) experimental energy 
profiles; d,i) simulated energy profiles; e,k) simulated plasma wakefield and 
position of the bunches inside the wake. ................................................................. 75 

file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225664
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225664
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225664
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225665
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225665
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225665
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225666
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225666
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225666
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225667
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225667
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225667
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225667
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225667
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225668
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225669
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225669
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225670
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225670
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225671
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225671
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225671
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225672
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225672
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225672
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225672
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225672
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225673
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225673
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225673
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225673
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225673
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225673


 
xvii 

 

Figure 4.7: Experimental and simulated energy spectra after the 6 mm-long capillary 

discharge at 11016 cm-3 plasma density for the double-bunch beam (left 
column), and for the witness bunch only (right column): a,d) experimental 
energy profiles; b,e) simulated energy profiles; c,f) simulated plasma wakefield 
and position of the bunches inside the wake. .......................................................... 77 

Figure 4.8: Experimental data points for the energy shift of the witness electron-bunch 
centroid for a range of plasma densities. The solid curve represents 2D 
numerical calculations for the centroid energy shift. The dashed curves 
represent the shifts that correspond to the maximum wakefield amplitudes. ......... 78 

Figure 5.1: Example of a multibunch plasma accelerator in a maximum wakefield setup. 
The bunches are identical with 

pk w   and are separated by one plasma 

wavelength apart. A witness bunch 180o out of phase samples the accelerating 
wakefield. In this example 250p m   and 100r m  . ....................................... 84 

Figure 5.2: Example of a multibunch plasma accelerator in a maximum transformer ratio 
setup. The bunches are identical with 

pk w   and are separated by 1.5 

plasma wavelengths apart. The total charge is 500 pC and in each bunch is 
increased linearly. A witness bunch equidistant to the other bunches samples 
the accelerating wakefield. In this example 250p m   and 100r m  . ............. 87 

Figure 5.3: Example of a multibunch plasma accelerator in a maximum efficiency setup. 
The bunches are identical with 0.56pk w   and are separated by 1.28 plasma 

wavelengths apart. The charge in each bunch is  17.5 1: 2.70 : 5.20 :8.22pC . A 

witness bunch samples the accelerating wakefield. In this example 
250p m   and 100r m  . The driving efficiency of this system is 84% and 

the transformer ratio is 5.14. .................................................................................. 89 

Figure 5.4: Simulation of 4 drive bunches in the linear regime at the entrance of the 
plasma. Top left panel: On-axis electron beam density (green area), 
longitudinal on-axis electric field (blue line), on-axis beam density (black line) 
and on-axis plasma density (gray line). Top right panel: 2D dependence of the 
electron beam density (in units of 0n ). The white line shows the on-axis 

longitudinal position of the drive bunches, and the gray line (on the left) the 
summed transverse profile. Bottom left panel: Beam phase space p-z (in units 
of mc ). The blue line shows the longitudinal position of the bunches. Bottom 
right panel: The 2D dependence of the focusing force of the plasma. ...................... 93 

file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225674
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225674
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225674
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225674
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225674
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225675
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225675
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225675
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225675
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225676
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225676
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225676
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225676
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225677
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225677
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225677
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225677
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225677
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225678
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225678
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225678
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225678
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225678
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225679
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225679
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225679
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225679
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225679
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225679
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225679
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225679
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225679


 
xviii 

 

Figure 5.5: Simulation of 4 drive bunches in the linear regime after a 43 cm long plasma. 
Top left panel: On-axis electron beam density (green area), longitudinal on-
axis electric field (blue line), on-axis beam density (black line) and on-axis 
plasma density (gray line). Top right panel: 2D dependence of the electron 
beam density (in units of 

0n ). The white line shows the on-axis longitudinal 

position of the drive bunches, and the gray line (on the left) the summed 
transverse profile. Bottom left panel: Beam phase space p-z (in units of mc ). 
The blue line shows the longitudinal position of the bunches. Bottom right 
panel: The 2D dependence of the focusing force of the plasma. .............................. 94 

Figure 5.6: Simulation of 3 drive bunches in the blowout regime. Top left panel: On-axis 
electron beam density (green area), longitudinal on-axis electric field (blue 
line), on-axis beam density (black line) and on-axis plasma density (gray line). 
Top right panel: 2D dependence of the longitudinal electron field. The white 
line shows the longitudinal position of the drive bunches. Bottom left panel: 
Plasma density real space (in units of 

0n ). The white line shows the 

longitudinal position of the bunches, and the gray line (on the left) shows the 
transverse profile of the bunches. The red line shows the plasma density on-
axis. Bottom right panel: The 2D dependence of the focusing force of the 
plasma. ................................................................................................................... 96 

Figure 6.1: The plasma wakefield amplitude response of a non-bunched beam (top) and of 
a corresponding microbunched beam (bottom) of equal charge. The bunch 
separation is 10.6 μm and the microbunch length 1 μm FWHM............................. 102 

Figure 6.2: Experimental setup of resonant multibunch experiment at ATF. The 
unmodulated electron beam is inserted co-propagating with a CO2 laser in the 
IFEL wiggler microbuncher. The output modulated beam is then fed into a 
high-density plasma, and the energy change imparted onto the beam is 
imaged with a spectrometer on a phosphor screen. .............................................. 104 

Figure 6.3: Dependence of the relative resonant wakefield amplitude on the microbunch 
longitudinal spot size for a plasma with a 10.6 μm wavelength. ............................. 105 

Figure 6.4: Simulated plasma wakefield amplitude response on-axis after the beam has 
fully entered the plasma. 1) Multibunched beam density 2) ThemOsiris 
calculated wakefield 3) OSIRIS calculated wakefield. For a transverse spot size 
35 μm (shown here) and 500 pC of total charge, the generated wakefield 
amplitude is 7 GV/m. The plasma density is 1×1019 cm-3 . ...................................... 106 

Figure 6.5: Energy spectra of the 45 MeV microbunched beam for a plasma density 
exactly on resonance (left) and 3% off resonance (right). The initial energy 
spread is 0.1 MeV. The bottom of the figure shows the relative phasing 
between the bunches and the wakefield near the tail of the beam (the charge 
is too low to enhance the wakefield visibly). ......................................................... 107 

file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225680
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225680
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225680
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225680
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225680
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225680
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225680
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225680
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225680
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225681
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225681
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225681
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225681
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225681
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225681
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225681
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225681
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225681
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225681
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225682
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225682
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225682
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225683
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225683
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225683
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225683
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225683
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225684
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225684
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225685
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225685
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225685
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225685
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225685
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225686
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225686
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225686
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225686
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225686


 
xix 

 

Figure 6.6: The spectrum of the CTR emitted when the microbunched electron beam 
passes through a metal foil.................................................................................... 109 

Figure 6.7: Ratio of energy collected in each harmonic of the CTR spectrum for various 
microbunch widths. The solid colored curves correspond to the theoretical 
predictions. The arrows on the left depict the experimentally recorded data. 
The three sets of data agree at the region around 0.7z m  . These ratios 

include the response of the detector and the transmission of the filters. .............. 110 

Figure 6.8: Left panel: Simplified schematic of the microbunch generation technique using 
the mask. The beam with a correlated energy spread enters the dog-leg on the 
left, is dispersed in space, goes through the mask, and then is brought back to 
energy-time correlation. The letters “F” and “B” stand for the front and back 
of the beam, respectively. Right panel: microbunch structure created by the 
wire mask in both time and energy. Source: P. Muggli. .......................................... 113 

Figure 6.9: Left panel: Microbunches generated with the mask method dispersed in 
energy, for two cases with different number of bunches. Right panel: Auto-
correlation time-integrated CTR traces as a function of the interferometer 
arms path length. N=3 bunches with 1.4% energy spread and N=4 bunches 
with 3.4% energy spread are shown. Source: P. Muggli. ........................................ 115 

Figure 6.10: Electron energy spectrum of the bunched beam with 3 drive bunches and one 
strong witness bunch (out of phase) as recorded at the energy spectrometer 
at the end of the beamline. This is a favorable setup for a PWFA experiment. 
The horizontal axis is increasing energy to the right, while the vertical axis 
contains beam transverse profile information. ...................................................... 117 

Figure 6.11: Plasma wakefield amplitude response as a function of the plasma density for 
a bunched and non-bunched square beam. The bunches are separated by one 
plasma wavelength and their width is half a plasma wavelength. .......................... 118 

Figure 6.12: Energy spectrum of 5×30 pC drive bunches separated by 250 μm in space and 
by 0.25 MeV in energy as a function of the plasma density after 10 mm of 
plasma propagation. In densities above and below resonance the bunches 
suffer small energy spread, while at the resonance of 1.8×1016 cm-3 the 
wakefield is maximum and the energy spread becomes large. The last drive 
bunches samples the highest wakefield. ................................................................ 119 

Figure 6.13: Recorded energy spectra of the bunched (right panel) and non-bunched (left 
panel) before and after a 6 mm long plasma at a low density. ............................... 120 

file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225687
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225687
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225688
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225688
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225688
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225688
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225688
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225689
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225689
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225689
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225689
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225689
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225689
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225690
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225690
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225690
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225690
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225690
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225691
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225691
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225691
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225691
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225691
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225692
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225692
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225692
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225693
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225693
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225693
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225693
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225693
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225693
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225694
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225694


 
xx 

 

Figure 6.14: Simulated wakefield and energy spectra for the experimental data of the 
beam plasma interaction of Figure 6.13. The top panel shows the 7 bunches 
with 200 pC total charge fed into a 7×1013 cm-3 density 6 mm long plasma. The 
wakefield under each bunch deduced from the energy shifts is shown with red 
dots. The bottom panel shows the simulated energy spectra before and after 
the plasma. ........................................................................................................... 121 

Figure A.1: Comparisons of the maximum wakefield expressions as a function of the beam 
aspect ratio for bi-Gaussian bunches, when the plasma density is adjusted 

such that 2p zk   . ............................................................................................. 156 

Figure D.1: Comparison between OSIRIS and ThemOsiris codes for the same set of input 
parameters. Three electron bunches with peak beam density of 2×1012 cm-3 
are fed into a 5×1016 cm-3 plasma. The deviation between the codes is less 
than 5% in terms of the wakefield evolution, while ThemOsiris is at least 1,000 
times faster. .......................................................................................................... 171 

  

file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225695
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225695
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225695
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225695
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225695
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225695
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225696
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225696
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225696
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225697
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225697
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225697
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225697
file:///C:\Users\themos\Desktop\Thesis%2020080614.docx%23_Toc201225697


 
xxi 

 

Abstract 

Particle accelerators are the tools that physicists use today in order to probe the fundamental 

forces of Nature, by accelerating charged particles such as electrons and protons to high 

energies and then smashing them together. For the past 70 years the acceleration schemes have 

been based on the same technology, which is to place the particles onto radio-frequency electric 

fields inside metallic cavities. However, since the accelerating gradients cannot be increased 

arbitrarily due to limiting effects such as wall breakdown, in order to reach higher energies 

today’s accelerators require km-long structures that have become very expensive to built, and 

therefore novel accelerating techniques are needed to push the energy frontier further. 

 Plasmas do not suffer from those limitations since they are gases that are already 

broken down into electrons and ions. In addition, the collective behavior of the particles in 

plasmas allows for generated accelerating electric fields that are orders of magnitude larger 

than those available in conventional accelerators. Such wakefields have been demonstrated 

experimentally, typically by feeding either single electron bunches or laser beams into high 

density plasmas. As such plasma acceleration technologies mature, one of the main future 

challenges is to monoenergetically accelerate a second trailing bunch by multiplying its energy in 

an efficient manner, so that it can potentially be used in a future particle collider. 

 The work presented in this dissertation is a fruitful combination of theory, simulations 

and experiments that analyzes the use of multiple electron bunches in order to enhance certain 

plasma acceleration schemes. Specifically, the acceleration of a trailing electron bunch in a high-

gradient wakefield driven by a preceding bunch is demonstrated experimentally for the first 

time by using bunches short enough to sample a small phase of the plasma wakes. Additionally, 
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it is found through theoretical analysis and through simulations that by using multiple bunches 

to drive the wakefields, the energy of a trailing bunch could be efficiently multiplied in a single 

stage, thus possibly reducing the total length of the accelerator to a more manageable scale. 

Relevant proof-of-principle experimental results are also presented, along with suggested 

designs that could be tested in the near future. Furthermore, electron beam and plasma 

diagnostics are analyzed and presented, which are necessary for properly completing and 

understanding any plasma wakefield experiment. Finally, certain types of plasma sources that 

can be used in related experiments are designed, diagnosed and tested in detail.  
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In science one tries to tell people, in such a way as to be 

understood by everyone, something that no one ever knew 

before. But in poetry, it's the exact opposite. 

 - Paul Dirac 

 

Chapter 1  

Introduction 

1.1 Physics and Particle Accelerators 

“We are trying to prove ourselves wrong as quickly as possible, because only in that way can we 

find progress”. This is how the celebrated physicist Richard Feynman described the evolution of 

physics in his famous series of lectures he gave at Cornell University in 1965 regarding the 

character of physical laws [60]. Indeed, the experimenters are not very interested in confirming 

already-established laws under regular conditions. Rather, they prefer to look carefully in those 

places where the laws are most likely to be falsified. Consider for example the experiments that 

measured the blackbody spectrum [151] and the bending of light near the sun [46] in the early 

20th century which challenged our understanding of nature, thus allowing Max Planck and Albert 

Einstein, respectively, to suggest that energy is quantized [142] and that space is not flat [48], 

ultimately giving birth to the modern theories of Quantum Mechanics and General Relativity. 

Today and for the past 70 or so years, the most successful tools that we use to look into 

those new regimes are particle accelerators [138]. These machines use strong electric fields to 

http://www.quotationspage.com/quote/1422.html
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accelerate charged particles such as electrons and protons to high energies which are then 

smashed against each other at near the speed of light1. By observing the behavior of the 

products of those collisions, the elementary constituents of matter can be analyzed and new 

fundamental laws can be formed [11]. The ongoing success of these colliders has relied on the 

technological developments that allow them to accelerate particles at ever higher energies: 

From Einstein’s famous mass-energy equivalence equation, 2E mc , higher energies translate 

to more massive particles that can be created and detected in the accelerators. The progress of 

the accelerator energy over the past decades is depicted in Figure 1.1 . 

The energy of accelerators has increased almost 10 orders of magnitude since the first 

cyclotrons where constructed in the early 1930s, and this scaling has produced some amazing 

discoveries in the field of particle physics as the higher energies allowed for heavier particles to 

                                                             
1
 If a proton from the 14 TeV Large Hadron Collider was to race a photon around the earth, it would finish 

the race in 145 μs, lagging only 1 mm behind the photon. 

 
Figure 1.1: The Livingston curve shows the progress of the energy of various accelerators with time. 
From [138]. 
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be detected. Most of the quark structure inside protons and neutrons was identified in the 

1970s and 1980s at the Stanford Linear Accelerator Center (SLAC) [8], with masses that range 

between 1 MeV/c2 (for the up quark) to 5 GeV/c2 (for the bottom quark). The carriers of the 

electroweak force, W and Z bosons, were discovered in 1983 at CERN’s Super Proton 

Synchrotron (SPS) and were found to have masses 80 GeV/c2 and 90 GeV/c2, respectively. The 

heaviest elementary particle known to date, the top quark, was discovered only in 1995 at 

Fermilab’s Tevatron accelerator [39] with a mass of 171 GeV/c2. Without particle accelerators, 

our understanding of the four fundamental forces of nature would have been limited to 

Einstein’s theory of gravity [48] from 1915 and Maxwell’s equations for electromagnetism [121] 

from 1865. 

This success though has not happened without cost, as accelerators have come a long 

way since Lawrence’s first 1 MeV cyclotron in 1932 which was a mere 10 cm long [103]. The 

price, complexity and size of the latest particle accelerators have skyrocketed along with their 

energy. This dissertation is written in 2008, the year that the Large Hadron Collider (LHC) is 

commissioned. The LHC is the largest and most complicated machine ever constructed by 

humans, a circular 14 TeV proton – proton collider built underground in a 27 km tunnel at 

CERN [1], near the French-Swiss borders1. This worldwide effort of 2,000 scientists from 34 

countries will look for, among other things, the Higgs Boson with an upper expected mass of 

144 GeV/c2 (which may provide the tools to unify the three of the four fundamental forces), 

evidence for supersymmetric particles (which may explain the excess of non-baryonic matter in 

                                                             
1
 14 TeV is roughly the energy needed to pick up a piece of hair from the floor and place it on a table (this 

is mostly kinetic energy – the rest mass energy of a proton is 2 1E mc GeV  ). The total energy 

circulating in the 2×2800 bunches of LHC with 10
11

 protons each is 724 MJ or the energy of a TGV train 
running at full speed (320 km/h). 
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the universe) and string theory’s extra dimensions (which may explain why gravity is so weak 

compared to the other forces in nature). The price tag for LHC is between $5 – 10 billion. 

LHC – scale accelerators are very close to the limit of what we can practically afford to 

build using conventional technologies, even collaboratively. The International Linear Collider 

(ILC) [3], a proposed 1 TeV lepton smasher, is estimated to cost $7 billion and extend over 30 km 

in length, more than 10 times the length of SLAC. The Compact Linear Collider (CLIC) [175] is 

another scenario of a proposed lepton collider at 3 TeV with a length of 33 km and similar cost. 

Any such projects will be extremely hard to finance and may ultimately follow the path of the 

Superconducting Super Collider (SSC), a 87 km circumference accelerator that was cancelled 

after the projected cost exceeded $12 billion in 19931. 

The reason why the cost has been scaling with the collider energy is that the accelerating 

gradients (i.e., the energy gained per unit length) have more or less remained constant over the 

past few decades, in the order of 10 – 100 MV/m. Therefore, the only way to scale into higher 

energies is to simply make the accelerating portion longer, thus increasing the construction and 

maintenance costs at the same time. Those conventional techniques rely on radio-frequency 

electric fields that propagate inside metallic cavities. One of the major limitations of this 

technology is that if the accelerating fields are increased beyond a certain point, the modules 

are damaged [23] because the energy from these fields is approaching the energy that binds 

electrons to the atoms in the cavity walls and tears them apart. This is why the ILC gradient can 

only be 40 MV/m [3] (limited by the loss of superconductivity in the niobium cavities due to 

heat), only two times larger than the 20 MV/m of the 40 year old SLAC. Clearly, a revolution is 

                                                             
1
 24 km of the underground tunnel were bored in Texas after 2 years of construction before cancellation. 
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needed here; a new acceleration technology that will do for the accelerators what the transistor 

did for the electronics 60 years ago: miniaturize them. 

1.2 Plasma Accelerators 

1.2.1 Basic Principles 

The new particle acceleration technology that is the subject of this dissertation is plasma 

accelerators [50, 51]. The main principle behind it is that one can use a relativistic electron beam 

(Plasma Wakefield Acceleration – PWFA) or a laser pulse (Laser Wakefield Acceleration – LWFA) 

to excite relativistically moving waves in plasmas (ionized gases). The electric fields excited in 

those waves are at least 2 – 3 orders of magnitude stronger than the ones supported by the 

conventional metallic cavities, and thus, when utilized properly, they are used to accelerate 

particles to high energies in much smaller distances (thus reducing the cost). In addition, since 

plasma accelerating cavities (which are created dynamically every time) consist of already 

ionized particles, they do not suffer from the material breakdown damage like the conventional 

metallic cavities. Figure 1.2 illustrates the basic physical principles of a plasma accelerator.  

As the relativistic electron beam or the laser beam propagates inside the plasma, the 

electric field of the beam displaces the plasma electrons1, while the plasma ions are much 

heavier and stay static. Eventually the electrons are drawn back on the axis from the force of the 

positively charged ions, overshoot the axis, and they start to oscillate (perpendicular to the 

propagation direction of the beam in this figure). This sets up a charge density wave behind the 

beam, since the regions where the electrons cross the axis are more negatively charged than the 

regions where the electrons are far away from the axis. This charge difference creates a very 

                                                             
1
 The electric field of a relativistic beam is mostly transverse to its direction of motion. 
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strong electric field that propagates at the velocity of the beam. As a result, if a witness electron 

beam is placed at the proper phase, it will experience this accelerating field and be propelled to 

high energies. 

 A simple estimate for the strength of the electric field oscillation amplitude can be made 

by using Gauss’s law: 

 
0

E



  


 (1) 

Assuming a one – dimensional plane wave perturbation of the charge density, pik z
e ne


  , 

where e  is the electron charge, n  is the plasma density perturbation, and /p pk c  is the 

plasma wavenumber, then the electric field perturbation is 0
ˆ pik z

E z E e





, with ˆ /z z     ( c is 

 
Figure 1.2: The main physical picture of a plasma accelerator. A relativistically moving electron beam or 
laser pulse is moving to the right inside a uniform plasma. The electric field of the driver displaces the light 
plasma electrons, which are then drawn back on axis from the static ions, setting up an electron density 
oscillation. The corresponding electric field that is generated on axis is plotted in the bottom. 
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the speed of light in vacuum). For a density perturbation on the order of the neutral plasma 

density, 
0~n n , the electric field amplitude 

0E  is roughly 

 0
0 16 3

10
10

p

n GeV
eE mc

cm m



   (2) 

Note that the plasma frequency p  is given by 

 
2

0

0

p

e n

m



  (3) 

For a plasma with a neutral density 
16 3

0 10n cm , equation (2) indicates that an accelerating 

electric field (wakefield) of 10 GV/m could be supported by the plasma. These extremely large 

wakefields are the single most important reason that has motivated the plasma accelerator 

community over the last 30 years to investigate the details of using plasmas as accelerating 

structures. 

 The physical reason why plasmas can support those high gradients is the collective 

effect of the plasma electrons. As opposed to the other three states of matter where the 

particles and molecules are distributed in a fuzzy and incoherent way, inside a plasma its billions 

of freed electrons can be manipulated together and forced to act coherently. The success of the 

future plasma accelerator will rely on maintaining this nice collective behavior over long enough 

distances. Moreover, it should be pointed out that the plasma accelerator is merely an energy 

transformer. It does not provide energy; it may only transfer the energy of an existing beam to a 

trailing beam. As such, it still requires a pre-created driver to provide the initial energy to be 

extracted. Therefore, the plasma accelerator will not replace existing accelerators; it will rather 

extend them to higher energies [81]. 
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1.2.2 Progress of Plasma Accelerators 

In order to put the work presented in this dissertation into perspective, a review of the history 

of plasma accelerators until today is necessary [42] and the purpose of this section. 

 Plasmas where identified as early as 1879 [40] (dubbed radiant matter), by Langmuir’s 

time in the 1920s [102] they were known to support propagation of electron waves [169] and 

became well understood by the 1950s [5, 41]. Fainberg in 1956 was the first to suggest [56] that 

if one would generate plasma waves that propagated at relativistic speeds ( phv c ) then 

particles could be accelerated by sampling the relativistic electric fields inside the plasma. 

Although some first demonstrations of the interaction of an electron bunch train with a plasma 

happened in the mid-1970s by Berezin et al.  [17, 57] showing 250 kV/m gradients, it wasn’t 

until the rigorous work of Tajima and Dawson in their seminal 1979 paper [168] that a significant 

effort to conduct research on plasma accelerators was seriously initiated [43, 82]. In this paper 

the idea of using a laser to excite the relativistic waves in the plasma was first proposed. By 1985 

the excitation of the first GV/m unloaded relativistic waves in plasmas was reported by Clayton 

et al. [36] using laser beat – wave techniques1. 

Earlier in the same year Chen et al. [31, 93] analyzed the excitation of plasma waves by 

relativistic electron beams instead of lasers. In 1988 Rosenzweig et al. demonstrated 

experimentally for the first time the interaction of a trailing electron beam with the wakefield 

excited by a preceding drive electron beam [148]. They fed a 21 MeV drive beam with 2 – 3 nC 

charge which was 7 ps long into a 33 cm long plasma with a neutral density of 1013 cm-3 and 

observed 50 keV energy shifts of the witness beam at 5 MV/m gradients. Those experiments 

were later extended in the mildly nonlinear regime in 1989 [14, 149] (by allowing the plasma 

                                                             
1
 Single laser pulses were not intense enough at the time to excite those wakes, thus the beating between 

two laser pulses was utilized. 
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density 
0n  to become smaller than the beam density 

bn ), as was analyzed theoretically in 1987 

also by Rosenzweig [146].  

By 1991 the so-called blowout or bubble regime of the plasma wakefield accelerators 

was identified through simulations [13, 147]. In this highly nonlinear regime the drive beam is 

much denser than the plasma, 
0bn n , and as a result the region behind the driver is void of 

electrons leaving a uniform density ion column [15, 113, 114, 115]. A witness beam placed in 

that region was found to experience simultaneously uniform accelerating and focusing forces 

along its transverse size, an extremely desirable situation that is not possible with linear drivers. 

The first evidence of accelerated electrons using a laser-driven plasma were reported by 

Kitagawa et al. in 1992 [99] by trapping electrons in a beat-wave setup. Soon after, in 1993, in a 

series of very well monitored experiments, Clayton et al. showed the acceleration of externally 

injected electrons in a laser beat-wave plasma with 0.7 GV/m gradients [37], which was later 

followed by acceleration of trapped electrons up to 28 MeV by sampling 2.8 GV/m gradients, as 

reported by Everett et al. in 1994 [55]. By 1995 Modena et al. [122] reported the use of an 

intense 5×1018 W/cm2 laser to drive the plasma to wave breaking by inducing the Raman 

Forward Scattering instability, thus producing the most energetic electrons from a laser-driven 

accelerator at the time (44 MeV)1. Still, the laser pulse needed to be many times longer than the 

plasma wavelength for these schemes to work. 

As lasers became more powerful in the early 2000s reaching multi – TW levels, it 

became possible to excite plasma waves in the blowout regime [112] by using a single short 

pulse (with length comparable to the plasma wavelength). In 2002, Malka et al. published the 

first such results [119] by accelerating trapped electrons to 200 MeV using 1 Joule energy 30 fs 

                                                             
1
  The LWFA gradients where much higher than the PWFA gradients at the time due to the difference in 

the driver intensities:  typically 10
19

 W/cm
2
 for laser beams, 10

12
 W/cm

2
 for particle beams. 
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long Titanium:Sapphire laser pulses onto 2×1019 cm-3 density gas jets, albeit with 100% electron 

energy spread at the exit. Soon it was clear from the first 3D LWFA simulations [117, 145, 170] 

that in this regime very low energy spread bunches could be produced; it wasn’t long before 

three groups independently reached this “sweet spot” in 2004 [58, 63, 120] by trapping and 

accelerating 0.5 nC bunches to over 100 MeV with less than 10% energy spread. More than 20 

groups worldwide have since repeated those results, and in 2006 the output energy was 

increased to 1 GeV by propagating similar laser pulses inside a cm-scale capillary plasma by 

Leemans et al. [106, 127]. This last record-breaking result for laser-driven accelerators also 

brought forth the main issue with these schemes, the fact that laser pulses tend not to 

propagate focused over long distances due to diffraction, and it is challenging to extend these 

acceleration techniques to meter-scale plasmas that are required for particle-physics-quality 

energies. 

Relativistic charged particle beam drivers on the other hand are “stiffer” and do not 

suffer from diffraction as severely1. While the laser-driven acceleration was flourishing, the 

PWFA community had set forth to demonstrate that plasma accelerators can work over meter-

scales by using the 50 GeV SLAC electron beam as a driver in the ultrarelativistic blowout 

regime2 [73]. This collaboration produced a wide array of wonderful experimental results in the 

2000s, such as the transverse beam-envelope dynamics by Clayton et al. in 2002 [35], the study 

of positron focusing by Hogan et al. [75] and the 56 MV/m positron acceleration in positron-

driven wakefields by Blue et al. [19] in 2003, the 150 MV/m acceleration of the electron beam 

by Muggli et al. in 2004 [123], the first multi-GeV energy gain for any plasma accelerator by 

                                                             
1
 The effective relativistic parameter   for a laser is 

0 / ~ 10p   for a 1 μm laser at 10
19

 cm
-3

 density, 

while the SLAC beam has 510  . 
2
 This was initially proposed by John Dawson. 
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Hogan et al. in 2005 [74], and the production of ultra-short trapped electron bunches by Oz et 

al. in 2007 [136], culminating with the doubling of the energy for some of the electrons of the 

beam from 42 GeV to 84 GeV in a little less than one meter of plasma as reported by Blumenfeld 

et al., also in 2007 [18, 20]. Although the energy spread of those electrons was an undesirable 

100%, this latest remarkable result proved that over 50 GV/m accelerating gradients can be 

maintained in long plasmas. 

1.3 Present Challenges for PWFAs and Scope of the Dissertation 

In this section we will analyze the upcoming challenges that plasma wakefield accelerators have 

to surpass in the next 10 – 20 years in order to realize a future plasma-based lepton collider, and 

how the work described in this dissertation is placed along that roadmap. 

1.3.1 Future Collider Design Requirements 

We initially need to briefly summarize the requirements that a future lepton (electron-positron) 

collider must satisfy in order to produce interesting new physics [3, 175], since a plasma 

accelerator must be designed according to them [178]. First, the particle energy needs to be at 

least 250 GeV1. For comparison the previous largest electron-positron collider, CERN’s Large 

Electron-Positron (LEP), accelerated particles up to 105 GeV.  

Equally important is the luminosity L , or the number of collisions per cross-sectional 

area, defined as 

 
2N

L f
A

  (4) 

Here f  is the repetition rate of the collisions (per turn for circular colliders), N  is the number 

of particles per collision in each beam, and A  is the area of each beam. The Tevatron at 

                                                             
1
 For a total of 500 GeV per collision. 
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Fermilab has enough energy to create the Higgs Boson, but its luminosity is too low to provide a 

satisfying measurement, on the order of 1032 cm-2s-1. This is why LHC, CLIC and ILC luminosities 

are targeted towards the 1034 cm-2s-1 value. Furthermore, in order to produce high-quality data 

the beam quality also needs to be very high, which translates to 0.1 – 10% energy spread and 

emmitance of 0.01 – 0.1 mm-mrad.  

In order for this design to be constructible at a fraction of the present design cost 

estimates for CLIC and ILC, currently at $10 billion per TeV, an average accelerating gradient 

larger than 100 MV/m is required along with a wall-plug efficiency (the fraction of electrical 

power that translates to beam power) of 10 – 20%. In comparison, SLAC operated at 40 MW and 

CLIC & ILC will require a constant supply of 200 – 300 MW of AC power to operate at those 

efficiencies. 

1.3.2 Roadmap to a Plasma-Based Collider 

Presently the most promising technology for a plasma accelerator appears to be an electron-

beam driven PWFA as opposed to a laser-driven LWFA, for two primary reasons. First, lasers are 

limited by diffraction and it is not straightforward to extend the laser-plasma interaction length 

from 1 cm (which is the case now [106]) to several meters, required to achieve multi-GeV 

particle energies. Second, despite today’s PW-scale power, lasers do not provide enough energy: 

a required 250 GeV beam with 6×109 electrons (1 nC charge) contains 250 Joules of energy, as 

opposed to 1 Joule of energy that most present-day LWFA lasers can offer at a very low 

repetition rate. In contrast, the 50 GeV SLAC electron beam provides about 100 Joules of very-

low-entropy energy hundreds of times every second. 
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 PWFAs have already demonstrated that energy doubling at 50 GV/m gradients over a 

meter-long plasma is achievable. With that starting point, the following major milestones will 

need to be reached in the next few years in order to realize a future plasma-based collider: 

1. High-energy acceleration of a trailing electron beam with high charge and low 

energy spread 

 

2. High-energy acceleration of a trailing positron beam 

 

3. Wake excitation from a high-efficiency driver 

 

4. Multiply the energy gain either by staging or by increasing the transformer ratio1 

All 4 of the above milestones may depend on the use of multiple bunches, which is the main 

focus of this dissertation.  

Regarding item 1, the accelerated electrons observed in PWFA experiments to date have 

originated either from the same bunch that drove the wakefield or from unshaped witness 

bunches that were much longer than a plasma wavelength, thus sampling a large phase of the 

wake which increased the energy spread and spoiled the beam emmitance. Eventually a witness 

bunch that is much shorter than the plasma wavelength will have to be placed appropriately and 

accelerated with high-gradients. Such an experiment was performed at the Accelerator Test 

Facility (ATF) of the Brookhaven National Lab (BNL), and the main results are presented in 

Chapter 4 here (also published in [85]). Specifically, it is shown that a trailing bunch which is 

shorter than the plasma wavelength is accelerated under 150 MV/m loaded gradients for the 

first time. This result, combined with SLAC-type propagation in a meter-scale plasma experiment 

could lead to the realization of the first milestone. The process would then have to be repeated 

for an injected positron witness bunch (item 2). 

                                                             
1
 For a definition of the transformer ratio, see section 2.3. 
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Items 3 and 4 deal with high efficiency and multiplication of the energy in a single-bunch 

PWFA stage. Coupling 250 Joules of energy (required for a strong 250 GeV witness bunch as we 

showed earlier) with a realistic 10% efficiency using plasma acceleration requires 2,500 Joules of 

input beam energy. This is one order of magnitude more energy than a single electron bunch 

can carry today. As a result, multiple bunches will most likely need to be used to provide the 

necessary energy, either through staging (by placing many single-bunch PWFA cells in series), or 

by using multiple bunches in a single stage [118]. As we will analyze in Chapter 5, the latter 

solution not only could provide the necessary energy but also optimize the beam-to-plasma 

energy transfer efficiency without the need for specially shaped bunches (only their positions 

and charge need to be tuned).  

Furthermore, staging significantly reduces the average energy gradient of the total 

accelerator because it requires relatively long non – PWFA modules to be inserted between the 

different stages to achieve extraction of spent beams and injection of new ones. On the other 

hand, multiple bunch PWFA schemes can multiply the energy of a witness bunch in a single 

stage, thus eliminating the need for staging and preserving the high gradients. Such high 

transformer ratio scenarios will also be analyzed theoretically and through simulations in 

Chapter 5. In addition, some preliminary experimental results using multiple electrons bunches 

to drive wakefields will also be presented in Chapter 6. 

Multiple bunch schemes are favored in the linear or mildly nonlinear regime of plasma 

acceleration because the sensitive nature of the phasing of the bunches in the waves is not 

affected by the nonlinear frequency shifts that occur in the blowout regime. In addition, 

although the transverse focusing properties are not optimized in this regime and the gradients 

may not be as large, the linear regime offers design simplicity and symmetry in the acceleration 
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between electron and positron witness bunches (neglecting for now spot size constraints 

imposed by luminosity requirements). It is also less susceptible to instabilities such as the hose 

instability [44] which may prevent the beam propagation over very long distances otherwise. 

The rest of the dissertation is organized as follows. Chapter 2 analyzes results from the 

PWFA linear theory relevant to understanding the experiments and simulations presented later. 

Chapter 3 provides a series of experimental data regarding the design and diagnosis of plasma 

sources. Chapter 4 demonstrates the high-gradient witness bunch acceleration in the wake 

driven by a preceding bunch. Chapter 5 presents designs and simulations for high-transformer-

ratio and high-efficiency multibunch PWFA drivers. Chapter 6 demonstrates experimentally 

some preliminary schemes for multibunch PWFA accelerators. Finally, Chapter 7 summarizes the 

results and points out future research directions. 

1.4 Chapter Conclusions 

The following items are concluded from this chapter: 

 Particle accelerators are the main tool for doing modern physics but they have limited 

gradients; fields greater than 150 MV/m cause cavity wall breakdown. 

 Plasma – based accelerators overcome the gradient limitations because of the collective 

motion of the free electrons and provide a promising potential alternative. 

 A future electron-positron collider will require high energy (> 250 GeV), high luminosity 

(1034 cm-2s-1) and high beam quality (low emmitance and energy spread) achieved over 

relatively short distances. Present plasma accelerator schemes do not solve these issues 

satisfactorily. 
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 This dissertation demonstrates high – gradient acceleration of a trailing bunch and 

proposes the use of multiple electron bunches to multiply the energy of short trailing 

beams at a fraction of the conventionally required distances in an efficient manner. 
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In mathematics you don't understand things. You just get used 

to them. 

 - Johann von Neumann 

 

Chapter 2  

PWFA Linear Theory 

In this chapter the basic principles of plasma wakefield theory will be analyzed. The focus will be 

in the linear regime and specifically in those aspects fundamental to the understanding of the 

physical principles of the simulations and the experiments presented the in later chapters of this 

dissertation. Apart from the generated wakefield amplitude we will analyze the transformer 

ratio, energy efficiency, beam loading and also the transverse effects. 

In principle the linear regime is valid when the plasma density perturbation n  is small 

compared to the neutral plasma density 
0n , or 

0/ 1n n  . Since the density perturbation is 

typically on the order of the peak beam density 0bn , this criteria is equivalent to 
0 0/ 1bn n  . In 

practice and through simulations it is found that the predictions of the linear theory are good up 

to 
0 0/ 1bn n   [116]. 

http://www.quotationspage.com/quote/26929.html
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2.1 Longitudinal Wakefields 

2.1.1 Basic Equations 

A number of assumptions are made when deriving the plasma wakefield equations in the two-

dimensional linear regime. 1) There is azimuthal symmetry, / 0   . 2) The plasma ions 

remain static since their mass 
i  is much larger than the electron mass m . 3) The second order 

perturbations of all the quantities are much smaller than the first order perturbations. 4) The 

plasma electrons and ions are cold and have uniform neutral density. 5) The beam velocity is 

close to the speed of light c , i.e. ˆ
bv cz

 . 

Next we define the electron beam density distribution as follows 

        , , , ,b b b bn z r t n z ct r n n r         (5) 

Hence the beam charge density is b ben    and the beam current ˆ
b bJ zecn 


. Here z ct  

is a variable in the frame of the moving beam, and  bn r  is an amplitude-normalized to 1 

unitless probability distribution such that  0 1bn   . Combining Maxwell’s equations [121], 

Newton’s second law of motion for the electrons [130] and the equation of continuity for the 

plasma, it can be found (see Appendix A) that the plasma electron density is then 0 1en n n , 

where 1n n  is the density perturbation which follows the harmonic oscillator equation 

 
2

2 21
12 p p b

n
k n k n




  


 (6) 

and its solution as a function of   is given by the Green’s function integral 
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 (7) 
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Here 2 /p pk    is the plasma wavenumber. The corresponding longitudinal electric field 

perturbation  ,zE r   can be split into a longitudinal component  E  and a transverse 

component  R r  as      ,zE r E R r   which are given by [92, 116, 174] 
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

 

 

 (8) 

Notice that    E Z  . For a complete derivation see Appendix A. 
0K  is the zeroth order 

modified Bessel function of the second kind [4].  R r  is a unitless function that describes the 

transverse dependence of the wakes and it has the property that    bR r n r  for transversely 

wide beams. The equality is satisfied exactly when     1bR r n r  . It is interesting to point 

out that in that 1D limit, equation (8) shows that the longitudinal wakefield after the beam is 

proportional to the cosine Fourier transform of the beam density. 

2.1.2 Transverse Component 

Experimentally the most common transverse beam density profile is a Gaussian, defined 

through  
2 2/2 rr

bn r e 

  . We shall examine these profiles closer since they are most commonly 

assumed throughout this dissertation. Using equation (8), the transverse component  R r  of 

the longitudinal wake can be evaluated numerically and is plotted in Figure 2.1 for different 

beam spot sizes. The on-axis value  0R r   as a function of r  is plotted also in Figure 2.1 for 

different asymptotic expressions and it is given by the formula [116] 
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 (9) 

Here  1

1

bte
E b dt

t

 

   is the exponential integral of the first kind. We observe that for beams 

narrower than ~1p rk   the transverse effects become important, specifying the transition 

between 1D and 2D regimes. 

2.2 Transverse Wakefields 

In this section we will investigate the transverse wakefield of a beam in the linear regime, which 

for the relativistic beams studied here is equal to  , / rW r F e E cB    , and determines 

the transverse forces on the beam [33, 129, 167]. The transverse wakefield can be estimated 

once the longitudinal wakefield zW E  is known by using the Panofsky-Wenzel theorem [139] 

 
Figure 2.1: Left: Transverse dependence ( )R r of the longitudinal wakefield for transversely Gaussian 

bunches. Right: The on-axis transverse component of the longitudinal wakefield (0)R . The two 

asymptotic expressions for extreme values are also plotted here. 
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– or simply by taking the transverse component of Faraday’s law:

   z
W W E

W d Z R r
r r

 





  
   

  


. Equivalently [30, 33, 166] 

       
0

, sinb p

p

e dR
W r n k d

k dr



    






       (10) 

2.2.1 Focusing 

The envelope equation of a transversely Gaussian beam in one dimension (neglecting space 

charge effects which are of the order of 
21/  ) [35, 72, 161] is 

 
2 2

2 2 3

x N
x

x

d
K

dx

 


 
   (11) 

Here x  is the transverse spot size of the beam along the dimension x , K  is the focusing 

strength, and N  is the normalized emmitance of the beam. Deviations in the initial spot size of 

the beam are minimized when the beam emmitance is matched such that 
2

2
0xd

dx


 , or 

 2

N xK    (12) 

Inside an ion channel (void of electrons) there is no azimuthal magnetic field ( 0B  ) and the 

remaining transverse electric field 
rE  (calculated from Gauss’s law) increases linearly with r , 

while the focusing strength is a constant: 
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0

2 2

0

/

2 2

pr
kn eeE r

K
mc mc   

    (13) 

The matched emmitance is then given by the formula 

 2

2
N p xk


   (14) 
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This scenario, which often occurs in the blowout regime of PWFAs, is highly desirable since 

either the beam spot size remains constant (if the emmitance is matched) or it stably oscillates 

around the equilibrium value. 

In other cases though, the focusing strength is not constant and it may depend on the 

longitudinal position along the bunch. It can be proven from first principles that it is then given 

by the more generalized equation [72] 

     2 2x

x

e
K x W x

mc


 
   (15) 

Here W
 is the transverse wakefield acting on the beam in that dimension and 

      xx W x x W x n x dx



 



     (16) 

In the above expression  xn x  is the 1D density probability distribution of the beam in that 

dimension1.  

2.2.2 Emmitance Balancing in the Linear Regime 

Specializing now in the linear regime of PWFAs, by replacing the transverse wakefield from 

equation (10) on equation (15) we have 

  
 

   

 

2 2
;

x

x x

x

I

eZ
K x R x n x dx

mc




 

 





  


 (17) 

The approximately “matched” or balanced emmitance is then found from equation (12) as 

  
 

 2
;N x x x

eZ
I

mc


        (18) 

                                                             
1 For a Gaussian beam density    2 21/ 2 exp / 2x x xn x x     the constant value of 2 / 2pK k   is 

retrieved for an ion channel, independent of x . 



 
23 

 

The function  xI   defined in equation (17) can be evaluated numerically for a Gaussian beam 

distribution  

2

221

2

x

x

x

x

n x e






 . The minimum value of the emmitance that can prevent a 

single beam from collapsing under the focusing force is found by assuming a transverse 

wakefield on the order of 0 / pZ E k , where 0E  is the maximum value of the longitudinal 

wakefield E  inside the beam.  Then we find that 

    0
N x x x

p

e E
I

mc
    


   (19) 

 
Figure 2.2: Transverse focusing dependence for a Gaussian distribution, useful for calculating the 
emmitance that balances the plasma’s transverse focusing force. 
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2.3 Transformer Ratio 

2.3.1 Physical Interpretation 

The transformer ratio R  is defined as the ratio of the maximum accelerating wakefield behind a 

bunch maxE
, divided by the maximum decelerating wakefield inside the bunch maxE

. It is an 

artificial measure on how efficiently energy is transported from a drive bunch into a witness 

bunch through the plasma oscillations. 

 max

max

E
R

E




  (20) 

The importance of the transformer ratio can be illustrated in an ideal case as follows. 

Assume that a single point charge Q  drives a wake, its total (kinetic) energy being 
0W . The 

charge will generate a maximum decelerating wakefield maxE
 and it will lose all its energy after 

traveling a distance L , such that 0 maxW E L . Now suppose that another test charge trails 

behind and gains energy by sampling the wake of the first charge. It can only gain energy over 

the same distance L , because in principle after that distance the first bunch has deposited all 

its energy to the plasma waves and has come to a halt. The total energy W  gained from the 

second charge is 

 0
max max 0

max

W
W E L E RW

E

 


     (21) 

Therefore the somewhat surprising result is reached that the total energy gained does not 

depend on the wakefield amplitude, but only on the transformer ratio. 
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2.3.2 Achieving Large Transformer Ratios 

In most plasma acceleration experiments to date the transformer ratio has not been an 

important factor because the interaction between the plasma and the beam happens over 

relatively small distances and the drive beams do not have enough time to deposit a significant 

fraction of their energy. However a realistic future plasma accelerator will have to achieve high 

transformer ratios in order to effectively multiply the energy of an incoming beam over short 

distances. 

According to the fundamental wakefield theorem, the transformer ratio of a single 

symmetric bunch in a linear homogeneous lossless plasma has a maximum value of 2 [10, 152, 

153] (for a simple proof, see Appendix B.1). In order to achieve higher transformer ratios, either 

an asymmetric bunch must be used or more than one driving bunches must be fed into the 

plasma. In the former case, it was found by Bane et al. [9, 32, 104] that a single bunch which has 

a linearly ramped longitudinal density profile (along with a sharp kick in the beginning1) can 

create a constantly retarding wakefield along the bunch length, with the efficiency approaching 

100% and a transformer ratio theoretically up to 2 M , where M  is the length of the bunch in 

units of pk  (see details in Appendix B.2). However these shaped bunches are not trivial to 

generate using present-day technology [49] and no PWFA experiment has been attempted using 

a single ramped bunch. 

Another promising way to achieve high transformer ratios using regularly shaped beams 

is the use of more than one drive bunches, as initially hinted by Laziev et al. in 1988 [104, 154]. 

Power et al. [144] and Jing et al. [78, 79] more recently have proposed schemes for dielectric 

wakefield accelerators where if the distance between the bunches and the charge in each bunch 

                                                             
1
 The sharp kick brings the wakefield in the optimal value, after which the ramp preserves it. 
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is adjusted appropriately, then the decelerating wakefield experienced by each bunch could be 

identical for all bunches and hence the transformer ratio and the efficiency will be enhanced. 

Those ideas can be extended to plasma accelerators1 and they will be analyzed in detail in 

Chapter 5. 

2.4 Energy Transfer 

In this section we will consider the driving energy efficiency of a plasma accelerator in the linear 

regime. This is of great interest because the plasma accelerator is essentially an energy 

transformer, extracting the energy from the drive beam(s) and delivering it through the plasma 

waves to a trailing beam. The efficiency is a very important parameter in the design of the 

accelerator as design efficiencies around 20% are highly desirable in order to reduce the cost of 

the accelerator. 

2.4.1 Driving Efficiency 

Given an electron beam with a specific initial energy, the driving efficiency is defined as the 

fraction of the total beam energy that has been transferred to the plasma waves at the end of 

the beam-plasma interaction.  

Let us focus on the energy transport between particles and fields using general 

electromagnetic theory. Assuming a current J


 created by a number of particles that are 

present in an electric field E


, then the instantaneous power density transferred from the 

particles to the fields and vice versa is defined by J E
 

 (with units of W/m3) . For the case of a 

charged bunch distribution, the total instantaneous power P  dissipated at the plasma (in 

                                                             
1
 They are applicable to other wakefield accelerator schemes as well, as long as they share the same 

formulation. 
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Watts) is just the integral of the above power density integrated over the whole volume of the 

bunch: 
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 
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

 

 (22) 

In order calculate the total energy transferred from the beam to the plasma, equation (22) 

needs to be multiplied by the total time of the interaction, /T L c  ( L  is the length of the 

interaction). This assumes that the velocities of the particles in the bunch are identical and do 

not change with time; in other words, the bunch is rigid1. 

The energy transfer efficiency of the interaction is now defined as the fraction of the 

total energy of the bunch that has transferred to the plasma after time T . Assuming that there 

are N  particles in the bunch, each having the same initial energy 
0 0 maxW eV eE L  , the 

efficiency   is written as 

 
       

0

0
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totalenergyin thebunch

2b b

r
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n r R r rdr n E d

NE


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

 


  




   

 (23) 

Note that  max 0 0E E R  (assuming the wakefield peaks on-axis). By inspecting the above 

expression we observe that the efficiency is maximized to unity when the electric field is 

                                                             
1 Otherwise the time-dependent integral Pdt  needs to be evaluated. 
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constant for every point along the bunch distribution,  max 0E E  , with   1R r  . Physically 

this means that every particle inside the bunch is depositing its energy to the plasma at the 

same rate. In that case the efficiency becomes 

 

   0

0 0

0 0

2

1

N

b b

r

E n r rdr n d
NE

NE NE

  
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 
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   
 







 (24) 

It may not be obvious right away that the constant electric field 
0E  along the bunch (in the 

enumerator of the above expression) and the electric field that corresponds to the initial energy 

of the bunch 
maxE  (in the denominator of the above expression) should be the same. However 

the physical meaning of 
maxE  is the electric field required such that a charge with energy 

0 0 maxW eV eE L   will come to a stop after distance L . 
0V  then is simply the voltage difference 

induced between the start and end points. Of course the symmetrical argument can also be 

applied: It is the electric field required to accelerate a charge e  over distance L  to an energy 

0 0 maxW eV eE L  . 

2.4.2 Transverse Efficiency 

The efficiency specified in equation (23) will be less than unity for bunches for which   1R r   

for some r . For transversely Gaussian bunches,  
2 2/2 rr

bn r e 

  , this transverse driving 

efficiency which is defined as 
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 is plotted in Figure 2.3 as a function of the bunch width p rk  .  0R  is the maximum value of 

 R r , which here occurs on-axis. 

The transverse efficiency increases with decreasing r  because the wakefield variation across 

the beam is less for narrower beams. The efficiency is compared with the transverse efficiency 

of a transversely flat-top bunch (with an infinitely sharp cutoff at pr k  ). We observe that for 

narrow bunches ( 1p rk    or 1pk   ) the efficiency is independent of the exact bunch shape 

since the wakefield always extends out to a distance 1/ pk . However for wide bunches the 

efficiency of a Gaussian bunch is 50%, unlike the wide sharp flat-top bunch which approaches 

 

Figure 2.3: Transverse efficiency of a Gaussian bunch (beam width 2 p rk  ) and of a flat-top bunch 

(beam width 
pk  ). 
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100%. This can be explained by invoking physical arguments when realizing that for wide beams 

( 1p rk   ), the transverse component of the wakefield  R r  and the transverse beam profile 

 bn r  will overlap very closely since the expelled plasma electrons stay close to the beam (

p r  ). Hence for wide beams    
2 2/2 rr

bR r n r e 

   with  0 1R   and in this case 

equation (25) will read   
2 2 2

/2

2

0

1
2 1/ 2

2
rr

r r

e rdr 








 . Wide flat-top bunches consist a 

special case where        2

b b bn r R r n r n r     and therefore yield transverse efficiency of 

1   (equivalent to setting   1R r   which is the 1D limit). 

2.4.3 Efficiency vs Transformer Ratio 

The concepts of driving efficiency and transformer ratio are very closely related. In this section 

we provide an example to illustrate the similarities and differences between these two 

parameters. Assume a single longitudinally square bunch centered at 
0  with a longitudinal 

width w  containing 
0N  particles that has a beam density profile 

   

2

2

0

20 0

2
,

2
r

b

b

b

r

b

nr

n

n

N
n r rect e

w w

 





 
  

 






 (26) 

Here the function  /rect w  is 1 for / 2w  , ½ for / 2w   and 0 otherwise. Using 

equation (8), the electric field generated by this bunch in the 1D limit is 
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Here U  is the Heaviside step function. The driving efficiency is calculated from equation (23) 

and is equal to 

  
 1 cos p

p

p

k w
k w

k w



  (28) 

The transformer ratio is simply from equations (27) and (20) 
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The values of the longitudinal efficiency   and the transformer ratio R  are plotted in 

Figure 2.4 as a function of the normalized width of the bunch pk w . For comparison, the 

 
Figure 2.4: Transformer ratio and driving efficiency of a single square bunch as a function of the 
normalized bunch width 

pk w . The results are compared with the transformer ratio and efficiency of a 

Gaussian bunch with normalized width 2 p zk  . The transformer ratio for the Gaussian is defined at 1σ. 
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corresponding parameters for a Gaussian bunch of the same number of particles (achieved 

when 2 z w  ) are also plotted in the same graph1. 

It is observed that although the two parameters (  and R ) are optimized around the 

same rough range of values for pk w , they peak at slightly different points. In order to analyze 

this difference, we can compare the situations where the two above quantities are maximized, 

namely pk w   (which maximizes the transformer ratio at 2R   and then the efficiency is 

2 / 63.6%   ), and 0.742pk w   (which maximizes the efficiency at 72.5%   and the 

transformer ratio then is 1.84R  ). 

In the maximum transformer ratio case, pk w  , the maximum wake inside the bunch 

is 0
max

0

ben w
E

 

   and the maximum accelerating wake after the bunch is exactly 

0
max max

0

2 2ben w
E E

 

   . Assuming that each particle in the bunch has an initial energy 0W , then 

the interaction length is limited by the length over which the fastest decelerating particle loses 

all its energy: 

 0 0 0

2

max 0b

W W
L

eE e n w

 


   (30) 

The energy left behind (transferred to the plasma) is proportional to the square of the 

accelerating field amplitude and the length of the interaction ( C  is a constant): 

  
2

0
max 0

0

4 b
plasma

n w
W C E L C W

 

      (31) 

                                                             
1
 Strictly, the transformer ratio of a Gaussian bunch is always equal to 1 (since the bunch extends to 

infinity). Here we evaluate the transformer ratio at a distance 1σ from the center. On the other hand the 
definition of the efficiency incorporates the bunch profile and does not suffer from this technicality. 
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In comparison, in the maximum efficiency case, 0.742pk w  , the maximum wake inside the 

bunch is 0
max max

0

1.35
0.742

ben w
E E

 

     and the maximum accelerating wake after the bunch is 

0
max max

0

0.742
2sin 1.24

0.742 2

ben w
E E



 

  
   

 
 . So in this case the decelerating wake is 35% higher, 

and the accelerating wake is 24% larger after the bunch. The interaction length now is shorter: 

 0

max

0.74
W

L L
eE 

  


 (32) 

Finally, the total energy transferred to the plasma is 

  
2

max 1.14plasma plasmaW C E L W       (33) 

So 14% more energy will be transferred to the plasma in the maximum efficiency case, even 

though the transformer ratio is actually smaller. The lower R  is counterbalanced by the higher 

wake, even if the interaction length is shorter. This is because the energy transferred is 

proportional to the square of the wakefield, but only linearly proportional to the interaction 

length (which is inversely proportional to the decelerating wakefield). 

2.5 Beam Loading 

In this section we will investigate the process of energy transfer from the plasma wave to a 

witness bunch. In order for the bunch to gain energy it needs to be phased properly at the 

accelerating crest of the plasma wakefield. The witness bunch will also suffer energy spread if 

the longitudinal wakefield is not uniform along its longitudinal and transverse dimensions. 

Finally, an energy transfer efficiency from the plasma to the bunch electrons is associated with 

this beam loading. The question is then what is the optimal set of parameters for the witness 
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bunch (charge, width, phasing) to optimize the acceleration process and produce an accelerating 

bunch with low energy spread and high efficiency. 

2.5.1 Longitudinal Beam Loading 

Assume a external longitudinal plasma wakefield that has the form (on-axis) 

      0 0cos 0ext pE E k R   (34) 

Here  0 0R  is given by equation (9). At this point it is not relevant how this wakefield was 

created; it may have been generated by a single bunch or by a series of bunches, adding in or 

out of phase. After the drivers though, the wake that is left behind can be fully described with 

the above expression. 

For simplicity let us assume a square witness bunch with 
wN  particles and length w  

phased at a position w p wk   after the location of the external wakefield maximum 0  , of 

the form 

 

2

2

0

2

22
w

b

r

w w
b

w

n

N
n rect e

w w

 



 
  

 

 (35) 

The total wakefield inside and after the bunch (on-axis) can be found by superimposing the 

external field from equation (34) to the field generated by the witness bunch from equation (27)

. The beam loading efficiency then is found to be 

 

 

 

 

2

0 02

0

0

0 0

1 sinc 2cos sinc
2 2

0

0

before after after p p

b p w

before before

w w

W W E k w k w
p k p

W E

E R
p

E R

 
     

         
    



 (36) 
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Here    sinc sin /x x x  is the unnormalized sinc function and 0
0 2

0 02

w b
w

r

eN en w
E

  
   is the 

longitudinal wakefield amplitude per normalized unit length generated by the witness bunch. 

The maximum efficiency is achieved when the bunch is phased at the most flat portion of the 

external wave (so that different particles experience as similar as possible accelerating gradient), 

i.e. w p wk    . In that case and for very short bunches, 0pk w , then in the 1D limit (

   0 0 0 1wR R  ) the expression derived by Katsouleas et al. in 1987 [92, 174] is retrieved: 

 0 0

0 0

2w w
b

E E

E E


 
  

 
 (37) 

On the other hand, increased efficiency occurs at the expense of larger energy spread for this 

unshaped bunch. 100% efficiency happens when 0 0wE E  (or 20 0 2w r

E
N

e


  particles are 

loaded into the wake) and means that no wakefield is left behind the bunch, therefore the 

 
Figure 2.5: Longitudinal beam loading efficiency (left) and fractional longitudinal energy spread (right) of a 

square bunch accelerated by an external wakefield as a function of the normalized bunch length 
pk w , 

the phase 
w  of the bunch in the wake, and the number of particles in the bunch (related to the ratio 

   0 0 0 00 / 0w wp E R E R ). 
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wakefield along the bunch will vary from 
0E  (in the head) to 0 (in the tail) resulting in 100% 

energy spread. The fractional energy spread 
wf  for the square bunch is given by the formula 

 
0

0

sinc
2

p

w

k wW
f p

W

 
   

 
 (38) 

In Figure 2.5 the beam loading efficiency and the energy spread for a square witness bunch are 

plotted in the 1D limit as a function of the bunch parameters: the bunch width pk w , its phase in 

the external wake 
w , and its self-wakefield 

0wE (which is proportional to the number of 

particles in the bunch) normalized to the external wakefield amplitude 
0E . We observe that 

although the efficiency is substantially lower when the witness bunch is placed before the peak 

of the wake, its charge can be adjusted such that the energy spread is minimized (at some 

expense of the accelerating gradient).  

2.5.2 Reverse Ramped Bunch 

The tradeoff between efficiency and energy spread can be surpassed if a longitudinally specially 

shaped bunch is utilized, as described in [89, 92, 174]. The efficiency is maximized with no 

longitudinal energy spread if all the particles on-axis feel the same accelerating wakefield. Using 

equation (8) and assuming an external wakefield of the form in equation (34), by requiring the 

total field inside a bunch with its head phased p wk   relative to the external wake to be constant, 

the optimal longitudinal beam distribution is found 

  
 

     0 0 0 0
sin cos

p

b p w p w p w

k E R
n k k k

e


        

   (39) 

while the phase is adjusted between / 2 p wk    . The (constant) accelerating gradient in 

this case is    0 0 00 cosa pE E R k   , the maximum length of the bunch is 
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 tanp p wk L k   , the longitudinal efficiency is  2sinb p wk   and the total number of 

particles in the bunch is 
 
 

2

0

0

0

sin

2cos

p

w

p

k
N N

k




  , with 

 2

0 0 0

0

2 0r E R
N

e

 
  for a 

transversely Gaussian profile. Although now there is no energy spread, the efficiency (and the 

number of particles) are increased at the expense of the accelerating gradient. Those tradeoffs 

are depicted in Figure 2.6. 

2.5.3 Transverse Beam Loading 

So far we have ignored transverse effects in the beam loading process. Now suppose that the 

same square witness bunch defined in equation (35) is found inside a 2D external axi-symmetric 

wakefield 

 
Figure 2.6: The efficiency, accelerating field and the relative number of particles accelerated for a ramped 
witness bunch in a sinusoidal wakefield as a function of its position relative to the external wakefield. The 
longitudinal energy spread is zero for this specially shaped bunch. 
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      0 0, cosext pE r E k R r   (40) 

The wakefield generated from that witness bunch (after the bunch) has the general form (see 

also equation (27)) 

      , cosw w p w wE r E k R r     (41) 

Here 
w  is the phase shift of the witness wake relative to the wake of the external wakefield. 

The total energy in the wakefield before the witness bunch over one period of the wave is (for 

wide beams where the other field components can be neglected) 

      
2 / 2

2 2 2 2 2

0 0 0 0

0 0 0

2 cos

pk

ext p

pr r

W rdr d E k R r E rdrR r
k






  

 

  

     (42) 

The total wakefield after the bunch is given by the superposition of (40) and (41): 

 

     

   

 
 

 

2

0 0

0 0

, , ,

1 2 cos sin

after w ext

w p after

w w

E r E r E r

E R r p p k

E R r
p r

E R r

  

  

  

   



 (43) 

After calculating the energy afterW  in the wake left behind by the witness bunch similar to 

equation (42), the beam-loading efficiency of the system can be written as 

 

   

 

2 2

0

0

2

0

0

1 2 cos

1 1

w

after

b

ext

p p R r rdr
W

W
R r rdr









 

   




 (44) 

Some interesting special cases can be discussed here. First, if 0wE   then 0b   (no energy is 

transferred from the wake to the bunch). Second, if the bunch that excited the wake and the 

witness bunch have the same radial dependence (i.e.,    0 wR r R r ), then the transverse 
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components of the wakes overlap perfectly in space (albeit with different strengths) and the 1D 

result of equation (36) is retrieved, yielding the efficiency 

 
0 0

2cosw w
b w

E E

E E
 

 
   

 
 (45) 

Negative beam loading efficiency means that the bunch transfers energy to the plasma instead 

of the other way. In order for the witness bunch to absorb energy, the phase of the witness 

bunch must be selected such that cos 0w  . The maximum beam loading efficiency is obtained 

when 
w  , in which case the external wave and the bunch wake are exactly out of phase and 

cancel out. 

To illustrate the principles of beam loading, we can plot in Figure 2.7 the efficiency 

according to equation (44) when the external wake is of the form (40) with amplitude 
0E  and 

transverse dependence  0R r  corresponding to a transversely Gaussian bunch with spot size 

0 . The witness bunch is placed at the accelerating phase, 
w  . The efficiency is plotted 

versus the wakefield amplitude ratio, 0/wE E , where wE  is the amplitude of the sinusoidal wake 

that the witness bunch alone leaves behind it (proportional to the number of particles in the 

witness bunch). We also vary in the same plot the transverse Gaussian spot size of the witness 

bunch, w , by plotting curves for different 
0/w  , for three different values of 0pk  . Note that 

the 0/ 1w    curves are the same as the w   curve in Figure 2.5. 

We observe that when the drive and witness bunches have the same transverse width (

0/ 1w   ) then the beam loading is 100% when 0wE E . This of course happens with 100% 

energy spread since the two waves overlap out of phase everywhere in space.  For narrower 

witness bunches, 0/ 1w   , the efficiency is reduced and denser bunches (higher wE ) need to 



 
40 

 

be utilized to compensate for the narrower witness wakes. After the efficiency peaks for each 

case it eventually becomes negative since the wake energy left behind is mostly that of the 

witness bunch. Note that simply by changing 
w  will also alter the witness wake 

wE  by 
21/ w  - 

see equation (35). For example, for the case of 0 2.4pk   (top panel), if initially 
0/ 1w    and 

0/ 0.1wE E   (20% beam loading) then by making the spot size 10 times smaller (
0/ 0.1w   ) 

will also cause 
0/ 10wE E  , yielding an efficiency of ≈28%. 
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Figure 2.7: Beam loading for a transversely Gaussian witness bunch of spot size 

w  in the presence of an 

external wave of amplitude 0E  created by transversely Gaussian bunches of spot size 0 . The wake 

amplitude left behind by the witness bunch alone is wE . The different colored curves correspond to 

narrower witness bunches. The curves for 3 different values of 0pk   are plotted in this figure. 
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It is advantageous to use narrower drive bunches (bottom panels) since the wake 

energy is more efficiently absorbed. The reason for this is that when driving with a narrow 

bunch then the beam loading is insensitive to the width of the witness bunch since the wake 

always extends out to a plasma skin depth. Furthermore, narrow drive bunches increase the 

driving energy transfer efficiency (see Figure 2.3). The drawback is that the absolute number of 

particles N  that can be used in the drive bunch has to reduce as 
0  decreases, since the drive 

beam density 
2

0 0/bn N   cannot be raised arbitrarily without going into the nonlinear regime 

where these derivations break down (for a fixed plasma density). The plasma density could be 

decreased to allow for more particles, but only at the expense of the wakefield amplitude which 

scales as 0E n  for fixed 
0 0/bn n  (see for example equation (27) for the scaling). 

2.5.4 Transverse Energy Spread 

As with the longitudinal beam loading, there is always a tradeoff between the transverse beam 

loading and transverse energy spread. This energy spread is in addition to whatever energy 

spread may be imparted on the bunch by the longitudinal effects and field variation along the 

bunch. The transverse energy spread is caused by the off-axis field variation along the radial 

profile of the bunch. Unlike the transverse beam loading efficiency, it is not independent from 

the longitudinal profile of the bunch. Therefore, we shall examine the transverse energy spread 

on a longitudinally square and transversely Gaussian bunch of the form specified in 

equation (35), which is loaded onto an external wakefield of the form 

     0 0, cosext pE r E k R r  . Since the wake left behind by the witness bunch alone is equal 

to      , cosw w p w wE r E k R r    , the total wakefield inside the witness bunch is a 
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superposition of  ,extE r  and the wakefield found by substituting the bunch profile into 

equation (8), and can be written as 

 

     

 
 

 

2

0 0

0 0

, 1 2 sin sin
2

1

2sin
2

p

inside w p inside

w w

p

k w
E r E R r p p k

E R r
p r

k w E R r

   
 

      
 

 
 
 
 

 (46) 

The fractional transverse energy spread (defined at the radial tail 3 wr  of the bunch1) is found 

 
 

 

, 3
1

, 0

inside w

w

inside

E r
f

E r

 





 


 (47) 

The above energy spread is plotted in Figure 2.8 as a function of the various parameters of the 

system for 
w  . 

Two regions are clearly distinguishable in these graphs. For light beam loading (left 

side), the energy spread is determined by the external wakefield and  0insideE R r  only. For 

heavy beam loading (right side), the energy spread is determined by the transverse variation of 

the bunch wakefield along the bunch, i.e.  inside wE R r . For transversely similar bunches, 

0w  , the energy spread is independent of the witness bunch charge since the fields overlap 

everywhere in space. We observe that in order to retain a small energy spread while loading a 

significant amount of charge, a witness bunch narrower than the drive wave must be used. 

                                                             
1
 As with the transformer ratio, the energy spread for non-finite bunches strictly is always 100%. The 

emmitance (area of the beam particles in phase space) is a much better definition of beam quality, 
although it complicates the issue by including spatial particle information as well. 
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Figure 2.8: Fractional transverse energy spread for a longitudinally square (of width pk w ) and 

transversely Gaussian witness bunch (of spot size 
w ) in the presence of an external wave of amplitude 

0E  created by transversely Gaussian bunches of spot size 0 . The wake amplitude left behind by the 

witness bunch alone is ,w after wE E . The differently colored curves correspond to narrower witness 

bunches. The dashed curves correspond to bunch width / 4pk w  , while the solid curves correspond to 

/ 8pk w  . 

 
 

 
 
 

10
-2

10
-1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Wakefield Amplitude Ratio E
w,after

/E
0

F
ra

c
ti

o
n
a
l 

E
n
e
rg

y
 S

p
re

a
d

Transverse Energy Spread (@3)


w
/

0
=1


w

/
0
=0.5


w

/
0
=0.25


w

/
0
=0.1


w

/
0
=0.05


w

/
0
=0.01

k
p


0
=2.4

10
-2

10
-1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Wakefield Amplitude Ratio E
w,after

/E
0

F
ra

ct
io

n
al

 E
n
er

g
y
 S

p
re

ad

Transverse Energy Spread (@3)


w
/

0
=1


w

/
0
=0.5


w

/
0
=0.25


w

/
0
=0.1


w

/
0
=0.05


w

/
0
=0.01

k
p


0
=1

10
-2

10
-1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Wakefield Amplitude Ratio E
w,after

/E
0

F
ra

c
ti

o
n
a
l 

E
n
e
rg

y
 S

p
re

a
d

Transverse Energy Spread (@3)


w
/

0
=1


w

/
0
=0.5


w

/
0
=0.25


w

/
0
=0.1


w

/
0
=0.05


w

/
0
=0.01

k
p


0
=0.1



 
45 

 

2.6 Chapter Conclusions 

The following items are concluded from this chapter: 

 The transformer ratio can be greater than 2 in the linear regime if either non-symmetric 

or multiple bunches are used. 

 The electron bunches suffer from nonlinear focusing forces in the linear regime, which 

can be approximately tuned out by adjusting the emmitance of the individual bunches. 

 The beam to plasma longitudinal energy transfer efficiency is maximized (for single 

bunches) when all particles lose energy at the same rate, i.e. the field is constant under 

the beam. The transverse efficiency is maximized for narrow beams. Regularly shaped 

single bunches have maximum efficiencies around 60 – 70%.  

 Efficiency and transformer ratio are maximized almost simultaneously, however high 

efficiency schemes transfer more energy to the plasma over shorter distances even if 

the transformer ratio is smaller. 

 There are certain tradeoffs between efficiency, energy spread and accelerating gradient 

when the wake is loaded with a trailing beam. The resulting energy spread can be 

reduced either at the expense of the accelerated charge (unless the beam is specially 

shaped), or at the expense of the gradient (by placing the beam earlier than the peak 

accelerating wakefield). 
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Science is facts; just as houses are made of stones, so is science 

made of facts; but a pile of stones are not a house and a 

collection of facts is not necessarily science. 

 - Henri Poincare 

 

Chapter 3  

Plasma Sources 

3.1 Overview 

In order for the plasma accelerators to operate optimally, reliable plasma sources are required. 

These sources must be able to produce high density (1016 - 1019 cm-3), low temperature 

(< 10 eV1) and longitudinally uniform plasmas over relatively long distances (> 1 cm) in a 

controllable, repeatable and consistent manner.  

3.1.1 Gas Jets and Metal Vapors 

In some occasions the driver (either laser or electron beam) is intense enough to ionize a neutral 

gas and create the plasma, inside which the wakefields are excited [45]. Such was the case in the 

recent LWFA experiments by Malka et al., Faure et al., Geddes et al., and Mangles et al. [58, 59, 

63, 90, 119], where they managed to systematically produce relatively monoenergetically 

accelerated electron bunches of good quality (low emmitance and energy spread) using gas jets. 

                                                             
1
 What is usually quoted when we refer to a plasma temperature T  is, by convention, the corresponding 

energy k T . 
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In these setups there is typically a tank that holds a gas such as helium or hydrogen in 

very high pressure. This gas is released into vacuum through a valve and a small nozzle. The 

front of the focused laser pulse ionizes the gas, while the rest of the pulse expels the electrons 

and initiates the plasma oscillations. For instance, Faure et al. used a helium gas jet that had a 

nozzle diameter of 2 mm. The 1018 W/cm2 titanium-doped sapphire laser was focused 800 μm 

away from the nozzle, generating a longitudinally flat plasma density on the order of 1018 – 

1019 cm-3 over a 1.5 mm length with 400 μm density ramps on each side. However in those gas 

jet systems the acceleration length is limited by the length of the longitudinal plasma density 

plateau which in turn is limited either by the small nozzle sizes, by the length that can be ionized 

by the laser or by the dephasing length, thus it cannot be straightforwardly extended to multi-

cm-scale lengths. 

In a similar fashion, a lithium vapor inside a heat-pipe oven [171] was used as a plasma 

source in the SLAC energy doubling PWFA experiment [20]. The SLAC 42 GeV electron bunch is 

50 fs long, carries 1.8x1010 electrons and can be focused down to a 10 μm spot size, thus being 

intense enough (electric field > 5 GV/m) to ionize the lithium gas1. The meter-long plasma 

density (on the order of 1017 cm-3) was adjusted with better than 10% accuracy by tuning the 

neutral gas pressure and assuming 100% ionization [131]. 

3.1.2 Capillary Discharge Plasmas 

The plasma sources that are the focus in this dissertation are capillary discharges. As opposed to 

gas jets and metal vapors, capillary discharges do not require an external strong driver to ionize 

a neutral gas. Rather, the plasma is produced by applying a high voltage (typically in the several 

kV range) along a capillary tube, which typically have lengths anywhere from a few mm to 

                                                             
1
 Lithium has very low first ionization energy for a metal, equal to 5.4 eV. 
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several cm and transverse lengths up to couple of mm. The plasma electrons originate either 

from the ionization of a gas that has pre-filled the capillary tube (gas-filled capillaries [65, 95, 

159]) or from the evaporation of the capillary wall material (ablative capillaries [143, 158, 164, 

180]). Currents in the kA range may be required to break down the materials, so capillary 

discharges need to be supported by high voltage circuits that deposit enough energy to the 

capillary. 

Capillary discharges have many favorable characteristics for plasma wakefield 

acceleration. They can be used to extend the acceleration lengths, especially in LWFA 

experiments because the typically cylindrical symmetry can create a near-parabolic in the radial 

dimension profile, which favors laser channeling [52, 65, 84, 107, 159]. Capillaries are also great 

plasma sources for weak driving electron beams or lasers that are not intense enough to ionize 

the gas. In addition, the extra parameters introduced, such as the diameter or the initial gas 

pressure, allow for better control of the selected plasma density. Since the discharges may last 

for several μs before they die out and the relativistic beams travel close to the speed of light, a 

beam will transverse the capillary length in a matter of ps. The proper timing between a beam 

and the discharge also allows for a choice in the plasma density. Typically densities on the order 

of 1014 – 1019 cm-3 can be obtained.  

On the other hand, the density produced at a capillary may be sensitive to parameters 

that are not easy to reproduce widely, such as the exact material composition, the shape of the 

discharging electrodes and the internal impedance of the power supply along with the current 

pulse it can produce. Since each experiment usually builds its own capillary and power supply, 

there are difficulties in the reproducibility of the results among the researchers and there seems 

to be a lack of common knowledge in the literature. In addition, due to the complexity and the 
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violent nature of the discharges there exists no solid theory that predicts the produced plasma 

densities with accuracy and only recently a few simulation codes have been published [21, 24, 

25, 109, 181] in an attempt to validate experimental results. 

The goal of this chapter is to present experimental data for capillaries that were taken at 

the Pulsed Power Lab at the University of Southern California and at the Accelerator Test Facility 

at the Brookhaven National Lab. We examine how the various parameters of the capillary 

geometry (size, length and diameter) and discharge characteristics (charging voltage, gas 

pressure and electrode shape) affect the generated plasma density. In addition, the evolution of 

the plasma density with time, which is critical for the experiments described later in this 

dissertation, is also analyzed. 

3.2 Spectral Diagnostics 

Plasmas emit light; the light emitted at different wavelengths is a signature of the plasma and 

carries information about the processes that occur inside it. By collecting that light one can work 

backwards and estimate the plasma parameters such as the density and the temperature. There 

are a number of spectroscopic techniques available for analyzing plasmas, and we will review 

both standard used methods [76] as well as methods used specifically in the experiments 

described later in the dissertation. 

3.2.1 Typical Spectroscopic Methods 

A popular method for diagnosing both the plasma density and temperature is Thompson 

Scattering, which is based on the interaction between an electromagnetic wave and charged 

particles [156]. The diagnostic setup requires an external laser source that is focused into the 

plasma. The electromagnetic field of the laser will cause the plasma electrons to start oscillating, 
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and as the electrons quiver they emit radiation which is strong around the wavelength of the 

incident field (scattered wave). Since the interaction cross section is on the order of 10-13, this 

radiation is much weaker than the incident radiation. As a result a powerful laser needs to be 

used (such as the Ruby at λ = 0.694 μm) and the scattered radiation needs to be collected and 

imaged carefully. 

More relevant to capillary discharges, a widely implemented method for diagnosing the 

plasma density is laser interferometry [150, 158, 159]. In these setups typically a Mach – Zender 

interferometer is built with one of its arms passing through the plasma. The plasma’s index of 

refraction will depend on its density and will cause a phase shift in the incoming laser pulse. This 

method has the advantage that it provides full time-dependent evolution of the density during 

the plasma discharge; its main drawback is that the laser light may be deflected or absorbed by 

the plasma and pollute the interference signal, thus the density has to be extracted from the 

 

 
Figure 3.1: Experimental setup layout for the collection of the plasma light for the ablative discharges. 
Source: Daniil Stolyarov, BNL. 
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number of fringe shifts with extra care. For example, using a He-Ne laser over 3 mm of plasma a 

full phase shift of 3600 will occur for every 1.2x1018 cm-3 change in the plasma density1. Another 

advantage of this method is that when a 2D spatial detector is used to record the interferometer 

signal, then information about the transverse profile of the plasma can be also gained [47, 65]. 

3.2.2 Stark Broadening of Hydrogen Lines 

The principle diagnostic utilized in this work is Stark Broadening on hydrogen plasmas [6, 22, 26, 

53, 54, 61, 62, 64, 172, 173], which emit light largely in the optical wavelengths. The main 

physical principle is that transitions of electrons between atomic levels that would normally 

produce a spectral line almost at a single wavelength, now occur between perturbed levels and 

as a result the spectral line broadens [2]. The widening of the lines is caused by the electric 

fields2 generated by the free plasma electrons, therefore in general a larger plasma density will 

                                                             
1 The phase shift over a plasma length L with index of refraction 

p  is roughly 
laser pk L    , and the 

corresponding plasma density    2

04 /e lasern m e L    , assuming that 1 / 1 / 2p e c e cn n n n    . 
2
 The Stark Effect is the electric field analog of the Zeeman Effect, where a magnetic field is applied to 

perturb the energy levels. 

 
Figure 3.2: High-density time-integrated hydrogen plasma discharge spectrum. The absorption line around 
590 nm is attributed to the molybdenum ends of the electrodes. 
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cause a larger widening and a bigger Stark broadening [140, 141]. A sample spectrum is shown 

in Figure 3.2, and a typical hydrogen plasma discharge in Figure 3.3. 

Three different spectral techniques were used. First, the Stark broadening of the Balmer 

Hα (656.3 nm) and Ηβ (486.1 nm) lines: The width of the lines yields information on the density 

and the temperature of the plasma1. Second, the line intensity ratio between those two lines 

can provide information on the temperature. Finally, the temperature can be estimated from 

the background light that is emitted from hydrogen2 [80]. 

A typical experimental setup is shown in Figure 3.1 [29, 164]. The plasma light was 

collected from the side of the capillary through a series of lenses, it was fed into an optical 

spectrometer with a resolution of approximately 1 nm, and the resulting spectrum was imaged 

onto a CCD camera. In other setups one or more optical fibers were inserted transversely 

directly into the center of the capillary body to capture the plasma light at the center of the 

capillary. 

The plasma spectrum is post-processed and the FWHM linewidths 1/2  of the Balmer 

lines are measured by fitting the theoretically-predicted Lorentzian shapes under the lines (most 

often Hα). The plasma electron temperature T  is measured either from the ratio of the Balmer 

                                                             
1
 The Balmer α (red) and β (blue-green) lines originate from electron transitions from the third (n=3) and 

fourth (n=4) atomic shells, respectively, to the second (n=2) shell. The α line gives to the famous Orion 
Nebula its reddish color. 
2
 This light originates mostly from bremsstrahlung radiation. 

 
Figure 3.3: Photograph of the hydrogen capillary discharge at USC. Source: Jessica Hao Chen. 
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line intensities [16] or from the line to background ratio under one line [66]. Then, using the 

theory developed by Griem [66, 67, 68, 69, 70, 94, 160], the plasma density is estimated with a 

30% accuracy [16] using the nonlinear equation  [7, 67] 
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Here 1/2 is a parameter that depends on the plasma density, the temperature and the spectral 

line observed. The above formula is based on a number of assumptions on the state and 

behavior of the plasma, such as local thermal equilibrium (LTE) for the plasma and validity of the 

quasistatic approximation, which assumes that the spectral broadening is dominated by the 

effect of the electrons and that the ions remain static during that time. The theory seems to be 

 
Figure 3.4: The plasma density as a function of the linewidth of the Hα line for different temperatures. The 
plasma density is in units of cm-3 and the linewidth in units of nm. 
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reliable for plasma densities up to 1019 cm-3 and temperatures up to 5 eV. In Figure 3.4 the 

dependence of the plasma density on the measured linewidth for different temperatures is 

plotted for the case of the Hα line.  

3.3 Dependence of the Plasma Density on the Capillary 

Parameters 

The goal of this section is to investigate the dependence of the plasma density and temperature 

on the various parameters controlling a capillary discharge. These data are important because 

they allow design flexibility when a certain plasma source is to be designed for a plasma 

wakefield experiment. Most of the work described in this section was performed at the Pulsed 

Power Lab of the University of Southern California using transparent glass capillaries filled with 

Hydrogen gas. Unless otherwise noted, the charging voltage was set at 60 kV. The plasma light 

was collected by imaging the light onto a lens-to-fiber coupler, which was then fed through an 

optical fiber to an optical spectrometer with resolution of 1 nm. Every possible measure was 

taken so that only one parameter was varied at any given time, everything else remaining 

constant1. 

3.3.1 The Effect of Neutral Gas Pressure 

In this section we present a comparison of the spectra recorded for different neutral hydrogen 

pressures, up to 2 atm. The data are presented in Figure 3.5, where the spectra are normalized 

to the peak of the Balmer Hα line. 

                                                             
1
 Unfortunately the energy transferred from the power supply to the plasma cannot be independently 

controlled externally since it depends on the impedance of the plasma, which in turn depends on the 
discharge conditions.  
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It is evident from this figure that higher plasma densities (wider linewidths) and stronger 

light emission can be obtained for higher pressures. The linewidths of both lines increase, 

suggesting an increase in density. This is also accompanied by a change in the ratio of the two 

line intensities since we observe that the Hβ/Ηα ratio increases with pressure, suggesting an 

increase in the plasma temperature with pressure, according to the line-ratio technique that 

was mentioned previously. Quantitative measurements of the density and temperature are 

presented in the following sections.  

For low pressures and densities the line shape of the Hα line remains mostly Lorentzian, 

which strengthens the validity of the density calculations. For larger pressures the shape is not 

purely Lorentzian; however the right side of the Hα line is still Lorentzian enough and in those 

cases the twice of the right-side half width at half maximum was used to estimate the density. 

 
Figure 3.5: Normalized spectra recorded for increasing neutral hydrogen pressures. The right peak is the 
Hα line and the left peak is the Hβ line. 
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3.3.2 The Effect of the Capillary Length 

Figure 3.6 presents a set of data that depicts the plasma density dependence for different 

capillary lengths. Each data point is an average of 3 – 5 consecutive discharge shots with the 

error bar (min – max) being on the order of 10% (not shown). The inaccuracy due to the density 

extraction from linewidth and temperature uncertainty is higher than this shot to shot variation. 

It was observed that in general the density increases with pressure and initially 

increases with the capillary length, with a maximum density of 9.5×1018 cm-3 at a length of 12 

mm and pressure of 2 atm. For larger lengths (> 12 mm), the density drops and capillaries that 

had more than 30 mm of length did not always breakdown for fixed voltage settings due to the 

Paschen curve limitations. 

 
Figure 3.6: The plasma density for different capillary lengths as a function of pressure. “New pulser” refers 
to shots made after some slight modifications to the power supply unit. The charging voltage was 60 kV 
and the capillary diameter 0.6 mm. 
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A possible explanation for the observed increase in density vs. increasing length could 

be the following. Since the discharge is based on an avalanche effect, where each electron 

suffers a number of collisions along its path from one electrode to the other, a lengthier 

capillary would imply that each individual electron is involved in more collisions. In a short 

capillary the electrons diffuse out quickly before colliding with enough other particles to 

increase the plasma density. Then, after some optimal length is crossed, it is tougher to ionize 

the same number of particles per unit volume because the acceleration and speed of the 

electrons die out before they reach from one electrode to the other.  

Figure 3.7 shows the temperature dependence for the same capillary lengths as the 

previous graph. The temperature was extracted from line to background intensity ratio of the Ηα 

line. It is interesting to observe that the temperature also increases with length, and the 

 
Figure 3.7: The plasma temperature for various capillary lengths. “New pulser” refers to shots made after 
some slight modifications to the power supply unit. The charging voltage was 60 kV and the capillary 
diameter 0.6 mm. 
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maximum temperature is reached at 16 mm, while the maximum density was reached at 

12 mm. In fact, the absolute linewidth was larger for the 16 mm capillary, but according to these 

results the large linewidth was related to a large temperature increase as opposed to a plasma 

density increase. Since these plasma densities are close to 1019 cm-3, the temperature affects the 

linewidth more strongly as compared to low densities where the temperature effect is not as 

important. 

3.3.3 The Effect of the Charging Voltage 

Figure 3.8 shows plasma density vs. pressure for different charging voltages, 54 kV, 66 kV and 

78 kV, for a 20 mm long capillary with 0.6 mm diameter. 

The plasma density for a given pressure is slightly higher when the charging voltage is 

increased from 54 kV to 66 kV, but there is no significant increase when the voltage is further 

increased to 78 kV (except at low pressures). The extra energy that is deposited into the plasma 

 
Figure 3.8: The plasma density as a function of the neutral gas pressure for three different charging 
voltages. The capillary length is 20 mm and the diameter 0.6 mm. 
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in the latter case is most likely distributed into the kinetic energy of the plasma electrons. This 

conclusion is drawn because the plasma temperature was measured to increase from an 

average of 2 eV to an average of 4 eV as the voltage was increased from 66 kV to 78 kV (not 

shown here). Thus further increasing the charging voltage in this case is not expected to yield 

analogous increased plasma density. 

It should be noted here that the energy that is deposited to the plasma during a 

discharge is not controlled solely from the external power supply. The plasma has its own 

impedance which is variable depending on the initial pressure, the plasma density and the 

plasma temperature. The energy transfer would be maximized if the internal impedance of the 

power supply was adjusted to match the resulting plasma impedance. A mismatched circuit is 

identified by the large number of oscillations in the current that flows in the system as a 

function of time. 

3.3.4 The Effect of the Capillary Tube Diameter 

Figure 3.9 shows plasma density vs. pressure for 3 different capillary diameters (0.6 mm, 1.2 mm 

and 3 mm). The capillaries were 20 mm long and the charging voltage was set to 60 kV. 

The data shows that narrower capillaries greatly enhance the plasma density. When the 

diameter decreases 2.5 times from 3 mm down to 1.2 mm the density increases 3.25 times, 

from 0.8×1018 cm-3 to 2.6×1018 cm-3.  Then, when the diameter is decreased further by a factor 

of 2, the density jumps to 7×1018 cm-3 which is an increase by 2.7 times. This is probably due to 

the enhanced current density. Assuming that the current supplied is approximately same over 

those discharges, ideally the current density should be inversely proportional to the square of 

the diameter of the capillary. The enhancement observed in density is not linear to the current 
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density but it is still very strong, suggesting that in order to achieve high one must minimize the 

capillary diameter (while preserving the breakdown). 

Additionally, when a 0.3 mm diameter capillary of the same length was tested, it was 

found that the spectrum was radically different with a very large spectral background and no 

clear Hα line visible. This was attributed to the very high temperature of the plasma caused by 

the mismatch in the impedances between the high-voltage pulser and the plasma. Only when a 

50 Ω load was added in series to the capillary did the temperature drop and the Hα line 

reappeared (see also the data in the next section). 

3.3.5 The Effect of the Hollow Electrode Inner Diameter 

In this setup we tested two pairs of electrodes, one pair with 0.6 mm hole diameter (equal to 

the diameter of the capillary in most cases) and one pair with no holes at all (flat). The purpose 

 
Figure 3.9: The dependence of the plasma density as a function of pressure for 3 different capillary tube 
diameters. The capillary lengths are 20 mm and the charging voltage 60 kV. 
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of this experiment was to test for any hollow cathode effects that may enhance the plasma 

density in the capillary. The capillary that was tested was 16 mm long. We observed that the 

plasma density is relatively insensitive to the electrode shape, as the differences never exceeded 

the shot-to-shot statistical variation. Temperature measurements similarly showed that the 

plasma temperature is also not affected significantly by the choice of the electrode. 

3.4 Variation of the Plasma Density along the Length of the 

Capillary 

For the resonant experiments described later in this dissertation, a major requirement for the 

plasma source is that the plasma remains uniform at a constant density over the length of the 

capillary. The tolerance in the uniformity of the plasma is determined by the number of bunches 

 
Figure 3.10: Plasma density in a 16 mm capillary as a function of pressure for two different capillary 
diameters. Two different types of electrodes (flat and hollow) were also tested. 15 psi≈1 atm. 
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N  that drive the wakefields, and scales roughly as 1/ N . For example, for 5 10N    drive 

bunches (typical for the experiments under consideration) the plasma density needs to be 

constant within 10 – 20%, otherwise the excited wakefields from each bunch will be out of 

phase and cancel each other before the bunches leave the plasma. Therefore, it was important 

to establish whether the capillary discharges can produce longitudinally uniform plasmas. 

In order to measure the longitudinal dependence of the plasma density an optical fiber 

was mounted in a 2 dimensional translation stage and it was placed directly against the outer 

side of the glass capillary walls. The time-averaged plasma light was collected in successive 

discharges by tuning the position of the fiber along the length of the capillary. 

It was measured that for the given 17 mm capillary shown in Figure 3.11, the plasma 

density over a length of 8 mm near the center of the capillary did not vary more than 10% from 

 
Figure 3.11: Plasma density along the capillary axis for a 60 kV discharge in a 17 mm long capillary at 
1 atm of pressure. The error bars indicate 1-σ variations over 10 discharges. 
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the average value. However near the cathode side the density differs by a factor of two 

compared to the center of the capillary. This suggests that the resonant interaction length is 

shorter than the quoted length for the capillary. The plasma temperature behaves similarly 

along the capillary, having a flat region near the center and dropping fast near the electrodes. 

Similar results that show reduction in the plasma density and temperature near the electrodes 

were reported by Levin et al. in [108]. 

3.5 Variation of the Plasma Density with Time 

The time-integrated measurements presented in the previous two sections highlight the effects 

of the various capillary and discharge parameters, yet they are expected to yield smaller plasma 

densities than the actual ones because they are not sensitive to high densities that occur for 

only a short period of time – those peaks are averaged out. Therefore, since in many cases the 

exact plasma density is selected by tuning the arrival of the electron beam with respect to the 

discharge, it is important to resolve the plasma density in time. 

The time-dependence of the plasma density was investigated in the course of the 

multibunch experiments at ATF. We tested a 10 mm long hydrogen-filled capillary with 1 mm 

inner diameter using the following technique. The light during the discharge was collected by an 

optical fiber inserted directly into the capillary center, which was then fed into an optical 

spectrometer equipped with a 1,200 gr/mm grating. The entrance and exit slits were adjusted 

such that a 0.5 – 1 nm spectral window could be imaged onto a Photo Multiplier Tube and yield 

the signal recorded at that wavelength range as a function of time. By varying the central 

wavelength of that window, the profile of the Hα line versus time could be reconstructed after 

successive shots. By fitting a Lorentzian distribution to each set of wavelengths for every point in 

time the plasma density could then be extracted. 
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The success of this method relies on the reproducibility of the discharge among the 

shots (which needs to be monitored by collecting the light emitted in all wavelengths), and it is 

limited by the resolution of the spectrometer and the Signal-to-Noise ratio which decreases with 

narrower spectral windows. Figure 3.12 shows typical results for the evolution of the plasma 

density for different discharge parameters. The maximum density was obtained for 100 Torr of 

neutral gas pressure and 20 kV of charging voltage (two successive sets of measurements are 

 
Figure 3.12: Plasma density as a function of time for different discharge parameters. The plasma 
temperature is assumed fixed at 2 eV for this density range. Two different data sets where collected for 
100 Torr pressure and 20 kV charging voltage, separated by one day in time. The measurements become 
noisy at later times where the light emitted from the plasma is weak. 

 
 

 
 

 

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
10

16

10
17

10
18

Time [s]

P
la

sm
a 

D
en

si
ty

 [
cm

-3
]

Plasma Density for 10mm capillary [T=2eV, H

]

100Torr 20kV

100Torr 20kV #2

100Torr 10kV

30Torr 20kV

30Torr 10kV



 
65 

 

shown here). The peak density dropped by a factor of 2 when the charging voltage was reduced 

to half its initial value, 10 kV.  

For 30 Torr of gas pressure, the peak voltage is even lower, near the 1017 cm-3 range. 

Several hundred nanoseconds after the peak, the density is seen to drop linearly which indicates 

exponential diffusion. The plasma current typically peaks 50 – 100 ns before the density and 

vanishes 200 – 400 ns after that peak. 

In those sets of data the spectral window was 1 nm in the 100 Torr cases and 0.5 nm in 

the 30 Torr cases. This change allows smaller densities to be measured (narrower linewidths), 

yet the method becomes unreliable earlier in time due to the decrease in the light recorded. It 

can be improved though if a higher-resolution spectrometer is utilized while the optical 

sensitivity is preserved. For the spectra shown in this graph, the maximum single-to-noise ratio 

was 10, which implies that the density is known with 20% accuracy or better1 at densities down 

to 1017 cm-3. 

3.6 Chapter Conclusions 

The following items are concluded from this chapter: 

 Capillary discharges are a favorable option for PWFA experiments that require pre-

ionized plasmas. The density can be tuned through the initial neutral gas pressure, the 

capillary geometry or by tuning the arrival of the beam with respect to the discharge. 

 The Stark Broadening of the Hydrogen line Hα is a good diagnostic for plasma densities 

in the range 1017 cm-3 – 1019 cm-3. The plasma temperature also needs to be known at 

the high densities by measuring the line-to-continuum spectral ratio. 

                                                             
1
 Higher densities than 10

17
 cm

-3
 are known more accurately and lower densities are known less 

accurately, since higher densities produce more light. 
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 The density increases with increasing gas pressure, albeit less than linearly proportional. 

It becomes harder to ionize the plasma unless more energy is deposited. 

 The maximum plasma density initially increases with the capillary length up to an 

optimal of 12 mm length and a density of 9.5×1018 cm-3 for 2 atm of pressure. The 

density decreases for longer capillaries and eventually it becomes hard to even break 

down. 

 Increased charging voltage increases the amount of light emitted but this is attributed to 

temperature increase and not due to density increase. 

 The density increases between linearly and quadratically with decreased capillary tube 

diameter due to higher current density. 

 The hollow cathode effect is insignificant at the pressure range measured here 

(> 100 Torr). 

 The plasma density varies less than 10% longitudinally near the center of the capillary 

(for about half the total length), but it decreases by as much as a factor of 2 near the 

electrodes. 

 As a function of time the density has a peak shortly after the discharge current peak and 

then eventually starts dropping exponentially, probably due to diffusion as the plasma 

recombines at the capillary walls. 

  



 
67 

 

The things we know best are the things we haven't been taught. 

 - Marquis de Vauvenargues 

 

 

Chapter 4  

High-gradient Acceleration of a 

Trailing Electron Bunch 

Plasma waves can sustain extremely large electric fields that are orders-of-magnitude larger 

than those in conventional radio-frequency accelerators, which are limited by vacuum 

breakdown to accelerating gradients of up to 150 MV/m [23]. Such large amplitude electron 

density waves, or wakes, can be excited in plasmas by a laser pulse (laser wakefield acceleration 

– LWFA), or a relativistic particle beam (plasma wakefield acceleration – PWFA). Recent LWFA 

experiments demonstrated quasi-monoenergetic acceleration of self-trapped plasma electrons 

[58, 63, 106, 120]. Further scaling of LWFA to higher energies, by using higher laser power but 

larger spot sizes and lower density plasmas, will probably require injecting relativistic electron 

bunches into a plasma wave rather than starting with plasma electrons at zero energy (in order 

to maintain small emmitances). So far, this approach to potentially monoenergetic particle 

acceleration using plasmas has not been explored.  
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Experiments using PWFA methods similarly face the challenge of producing low-energy-

spread acceleration of an injected relativistic particle bunch. In previous PWFA experiments (see 

for example Refs. [12, 20, 179]) a single relativistic electron-bunch both drove the wake and 

provided the electrons to be accelerated. Using this scheme at SLAC, a record-high energy gain 

of 42 GeV over 85 cm of plasma was demonstrated [20], albeit with an undesirable ≈100% 

spread of the electron energy spectrum. To realize a future collider, such as one incorporating 

the PWFA afterburner concept [105],  a well-defined bunch is required that is suitably phased on 

the plasma wake of a preceding drive bunch thereby to achieve high efficiency and a small 

energy spread (≈0.1% which is typical for conventional accelerators). In the following sections a 

double-bunch PWFA experiment is detailed which demonstrates controllable high-gradient 

acceleration of a witness relativistic electron bunch injected into a plasma wave. 

4.1 Previous Work 

Earlier double-bunch PWFA experiments [14, 100, 128, 134, 148] utilized relatively long, 

picosecond electron bunches in low-density (1013 cm-3) plasmas; wakefields of only up to 

≈4 MV/m were inferred. This experiment differed substantially from these studies. First, the 

driver and witness bunches had subpicosecond lengths ( ~100z fs ), and both were shorter 

than the plasma wavelength. Consequently, the energy shift of both bunches could be directly 

observed rather than mathematically extracted1, as was required in earlier works. Second, the 

shorter bunch lengths and the higher plasma densities employed (up to 1017 cm-3) resulted in 

generated wakefield amplitudes that were two orders-of-magnitude larger compared to those 

studies.  

                                                             
1
 The wakefield in some of these works was extracted by evaluating the shifts of the bunch centroid after 

background signal subtraction. 
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In this experiment, the plasma density could be chosen such that energy lost by the drive 

electron bunch was transferred through the plasma wave to the second bunch, which, in turn, 

gained energy with minimum energy spread. The drive bunch lost about 1.0 MeV over 6 mm 

propagation in a plasma of 1016 cm-3 density, and the witness bunch, delayed by 500 fs, gained 

≈0.9 MeV corresponding to an average loaded accelerating gradient of ≈150 MV/m, while the 

beam loading efficiency was estimated to be approximately 77%. The measured energy gain and 

loss agree well with 2D linear theory calculations. This experiment was the first to generate and 

directly probe large plasma accelerating gradients (> 100 MV/m) utilizing a trailing electron 

bunch [85]. 

4.2 Experimental Setup and Diagnostics 

The experiment was performed at Brookhaven National Laboratory’s (BNL’s) Accelerator Test 

Facility (ATF). A photocathode rf gun followed by a conventional 2.856 GHz (S-band) accelerator 

produced a 1.5 ps-long (rms), 500 pC, 60 MeV single electron bunch [28] that was compressed 

and split into two distinct (in time and energy) subpicosecond bunches after traveling through a 

 
Figure 4.1: Layout of the double-bunch PWFA experimental setup. Figure by W. Kimura. 
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chicane compressor and “dog-leg” dipoles downstream from the linac (see Figure 4.1). These 

two bunches were focused transversely to 100r m   at the entrance of a 1014 – 1017 cm-3 

density plasma produced by an ablative capillary discharge [83]. A magnetic spectrometer at the 

end of the beamline recorded the energy change imparted to the bunches by the plasma. 

4.2.1 Coherent Transition Radiation Diagnostics 

Production of subpicosecond driver-witness electron bunch pairs separated by a distance 

appropriate for PWFA experiments in high-density plasmas (1016 – 1017 cm-3) is challenging 

[155]. The breakup of the electron beam into two distinct bunches at ATF was attributed to the 

combination of a nonlinear energy chirp introduced by the linac, over-compression of the bunch 

in the chicane, and coherent synchrotron radiation effects in the chicane and the dog-leg dipole 

magnets.  

Therefore, although the breakup of the bunch is repeatable and consistent [98, 165], 

control of its characteristics is limited. The two bunches were separated by approximately 1.8 

MeV in energy and had a typical full-width-at-half-maximum (FWHM) of 0.4 MeV, thus allowing 

 
Figure 4.2: Example of three different double bunch energy spectra taken many minutes apart, indicating 
the stability of the beam break-up. 
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direct observation of their energy shifts caused by their interaction with the plasma. Figure 4.2 

shows three double-bunch energy spectra recorded many minutes apart, demonstrating the 

stability of the break up.  

In addition, coherent transition radiation (CTR) interferometry [125, 157] was used to 

diagnose the two bunches in time (see details in Appendix C.4). The experimental setup for this 

diagnostic is shown in Figure 4.3. Figure 4.4 shows the CTR signal recorded as the position of the 

mirror in one of the interferometer arms was varied, for the cases of a single bunch and both 

bunches. The dips observed in the signal are attributed to the frequency limitations of the 

systems which act as a high-pass filter and neglect frequencies below a certain threshold1. 

Assuming that each  bunch has a Gaussian shape, by fitting the observed signal traces to the 

model it was found that the high-energy and the low-energy bunches, respectively, were 

roughly 45 µm (150 fs) and 27 µm (90 fs) long (rms), and were separated by 150z m   

(500 fs). Beam-position monitors and a Faraday cup also indicated that the total charge was 

                                                             
1
 This frequency cutoff was included in the CTR model. 

 
Figure 4.3: Experimental setup of the CTR interferometry diagnostic for the double-bunch experiment. 
Figure by W. Kimura. 
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preserved during the break up, with the low-energy bunch having about 60% (180 pC) of the 

charge of the high-energy bunch (300 pC). Finally, observations of the interaction between the 

bunches and the plasma showed that the high-energy bunch lost energy in the plasma 

independently of the presence of the low-energy bunch, thus implying that the former preceded 

the latter, which acted as the witness bunch. 

4.2.2 Plasma Density Diagnostics 

The plasma source was a 16.5 kV pulsed electrical discharge through a readily available 6 mm 

long polypropylene capillary with a 1 mm inner diameter. It should be noted that there is no 

fundamental limitation in using a longer, centimeter-scale, capillary to reach a larger energy 

gain. The breakdown in the vacuum ablates the capillary walls creating a carbon-hydrogen 

plasma. The discharge light was collected and guided by an optical fiber into a spectrometer that 

measured the hydrogen Balmer Hα linewidth, and the plasma density was derived from the well-

tabulated Stark broadening [7] (see section 3.2). An intensified time-gated camera collected 

spectral measurements with a resolution of 300 ns. 

 
Figure 4.4: CTR interferometry diagnostic for the single bunch (left) and for both bunches (right). The blue 
circles indicate experimental data, while the solid red line indicates the model fit. Figure by W. Kimura. 
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Those measurements are plotted in Figure 4.5 for the first μs, after which the density 

was extrapolated due to insufficient plasma light reaching the camera. The data show that the 

plasma reaches a maximum density of approximately 51017 cm-3, after which it is assumed to 

exponentially decay due to diffusion through the capillary openings [21, 179], according to the 

formula 
0

0( )

t t

Tn t n e




 . The diffusion constant chosen was estimated to be equal to 0.3T s  

for the data sets in this experiment, which corresponds to a nominal diffusion rate of one order-

of-magnitude per 1.5 μs. Therefore, the required plasma density, pn , could be selected by 

tuning the time-delay of the e-beam after the discharge started. The peak electric field of the 

discharge was about 3 MV/m (16.5 kV over 6 mm), which was much smaller than the typical 

 
Figure 4.5: Plasma density diagnostic for the double-bunch experiment. The Stark broadening of the Hα 
line was used to identify the density in the first μs (solid line), after which the density was extrapolated 
assuming exponential diffusion. The two dashed lines indicate the density dependence for two different 
time constants. 
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plasma wakefields in this experiment (> 80MV/m), and did not affect the energy spectra of the 

electron bunches significantly. 

4.3 Plasma Interaction Results 

4.3.1 Double Bunch Interaction 

The peak beam density, 
bn , of the two compressed bunches was approximately 1014 cm-3, so 

placing the physics of the beam-plasma interaction mostly in the linear overdense regime (

b pn n ) for the range of plasma densities used in these experiments [116]. In this regime, each 

bunch independently creates a wakefield with a spatial period equal to the plasma wavelength. 

While the drive bunch only loses energy due to its own wakefield, the witness bunch samples 

the superposition of the two fields, and loses or gains energy depending on its relative phase in 

the wakefield driven by the first bunch. This phase was controlled by tuning the plasma density 

(and hence, the plasma wavelength). Specifically, energy gain was expected at plasma densities 

such that the witness bunch samples the second half-period of the plasma wave driven by the 

first bunch, i.e., when approximately 
2

p

pz


   ; here, 
2

p

p

c



  with 

2

0

p

p

n e

m



 . 

In order to model the behavior of the witness bunch, a 2D numerical program was 

developed to calculate the linear wakefields driven by two Gaussian-shaped bunches [86] with 

the aforementioned experimental parameters (see Appendix D on ThemOsiris code). The 

validity of the modeling was verified by comparing the findings with the fully-explicit 2D particle-

in-cell code OSIRIS [71]. The amplitudes of the wakefields simulated by both methods agreed 

within 10%, thus justifying the use of the thousand-times-faster numerical calculation. 
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Figure 4.6: Experimental and simulated energy spectra of the double-bunch beam after the 6 mm-long 

capillary discharge at 410
15

 cm
-3

 plasma density (left column), and at 1x10
16

 cm
-3

 density (right column): 
a,f) raw energy spectrum without plasma; b,g) raw energy spectrum with plasma on; c,h) experimental 
energy profiles; d,i) simulated energy profiles; e,k) simulated plasma wakefield and position of the 
bunches inside the wake. 
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Comparison of the double-bunch interaction at two different densities is shown in 

Figure 4.6. The left-hand side column presents experimental energy spectra of the e-beam with 

the plasma discharge turned off [Figure 4.6(a)] and as measured after the 41015 cm-3 density 

plasma [Figure 4.6(b)], together with plots of the area-normalized line profiles integrated 

vertically (across the beam’s profile) in Figure 4.6(c). At this plasma density, both bunches 

clearly lost energy, since the plasma wavelength is longer than the separation between the 

bunches ( 529 2 300p m z m      ). The drive bunch lost ≈0.5 MeV, and the witness bunch 

lost ≈0.8 MeV, corresponding to average wakefield amplitudes (over the 6 mm capillary length) 

of 83 MV/m, and 133 MV/m. Figure 4.6(d) plots the simulations of the predicted energy spectra 

before and after the plasma interaction; they confirm that both bunches should lose energy. 

Figure 4.6(e) shows simulated combined plasma wakefield and longitudinal phasing of the two 

bunches in this field.  

The right-hand side column in Figure 4.6 shows the experimental energy spectra 

recorded when the plasma density was increased to 1×1016 cm-3, therefore reducing the plasma 

wavelength to 334 2p m z   . The witness bunch in this case mainly gained ≈0.9 MeV in 

energy [Figure 4.6(g-h)]. The simulation illustrates that the observed peak in the energy 

spectrum around 59 MeV resulted from the superposition of both accelerated electrons from 

the witness bunch and decelerated electrons from the drive bunch (which only lost energy) 

[Figure 4.6(i-k)]. Some residual charge of the drive bunch was recorded around 60.5 MeV, 

probably reflecting the non-Gaussian initial energy distribution in the experiment. 
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4.3.2 Single Bunch Interaction 

In order to confirm that the witness bunch was indeed affected by the drive bunch, the higher-

energy bunch was partially blocked by closing a slit located at the dispersion plane inside the 

dog-leg. Side-by-side comparison of the double-bunch and single-bunch interaction is shown in 

Figure 4.7. When the plasma density remained at 11016 cm-3, the witness bunch had an average 

energy loss of ≈1 MeV [Figure 4.7(d)]. Since the witness bunch lost 1 MeV due to its own wake 

and gained 0.9 MeV in the presence of the drive bunch, we conclude that the net energy shift 

due to the drive bunch was 1.9 MeV, corresponding to a ≈315 MV/m unloaded accelerating 

 
Figure 4.7: Experimental and simulated energy spectra after the 6 mm-long capillary discharge at 11016 
cm-3 plasma density for the double-bunch beam (left column), and for the witness bunch only (right 
column): a,d) experimental energy profiles; b,e) simulated energy profiles; c,f) simulated plasma 
wakefield and position of the bunches inside the wake. 
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wakefield amplitude driven by the first bunch. This value agrees with the numerical calculation 

and therefore the beam-loading efficiency is estimated approximately 
2

2

150
1 77%

315
b    for 

this interaction1. 

4.3.3 Plasma Density Scan 

Figure 4.8 depicts the measured energy shift of the witness-bunch centroid as the plasma 

density was scanned from 11014 cm-3 up to 41017 cm-3. Comparison of the recorded shifts with 

the 2D numerical calculation of the corresponding predicted energy shifts demonstrates good 

agreement with the simulation for the chosen plasma density decay profile. The experimental 

points show that the witness bunch progressively lost more energy as the plasma density was 

                                                             
1
 That would be the fraction of the energy transferred if the bunches were let to propagate over long 

distance while preserving their wakes. See section 2.5. 

 
Figure 4.8: Experimental data points for the energy shift of the witness electron-bunch centroid for a 
range of plasma densities. The solid curve represents 2D numerical calculations for the centroid energy 
shift. 
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increased from its minimum value, provided that the plasma wavelength remained longer than 

the bunch separation ( p z   ) and both bunches reside at the decelerating phase of the wake 

[see Figure 4.6(e)]. As the density was increased further near the 1016 cm-3 range, the plasma 

wavelength decreased and the witness bunch now sampled the second, accelerating half of the 

plasma wave period [ 2p z  ; see also Figure 4.7(c)], and therefore it gained energy while 

simultaneously loading the wake since its charge was comparable to that of the drive bunch. 

Energy loss was observed again at an even higher plasma density (> 41016 cm-3) where the 

witness bunch sampled the decelerating first half of the second period of the excited plasma 

wake ( p z   ).  

On the low plasma density side the wakefield eventually drops when the transverse 

beam size of the bunches ( ~100r m  ) becomes shorter than a plasma wavelength because 

the total charge in the bunches is not enough to excite a plasma oscillation with the 

corresponding large plasma wavelength. On the high plasma density side, the wakefield also 

drops because the longitudinal size of the bunches ( ~ 30z m  ) becomes long when compared 

to the plasma wavelength and thus the wakefields cancel out inside the bunches. For the plasma 

densities in between these two extreme cases, the wakefield excitation is optimal and its 

amplitude is determined by the relative phase at which the wakefields excited from each bunch 

add together. 

In summary, it was demonstrated that by adjusting the plasma density tunable energy 

gain or energy loss of a short ( z p  ) witness bunch that samples the wakefield generated by 

a leading subpicosecond drive bunch is possible. The measured energy gain of 0.9 MeV over a 

6 mm long, 1016 cm-3 density plasma corresponds to an unloaded average accelerating gradient 
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of 315 MV/m. The loaded gradient measured was 150 MV/m and the extrapolated beam loading 

efficiency of 77%. This work demonstrates that short-pulse accelerated trailing electron beams 

can be produced with a double-bunch PWFA scheme, and hence, the method constitutes a 

promising step forward towards producing monoenergetic bunches in next-generation ultra-

high gradient plasma accelerators. 

4.4 Chapter Conclusions 

The following items are concluded from this chapter: 

 Two ≈100 fs long 500 pC bunches could be generated at ATF, distinct in both energy and 

time (as diagnosed through CTR). Both bunches are shorter than half plasma wavelength 

for densities 1016 cm-3 and below. 

 By tuning the plasma density, the second bunch could be made to sample the 

accelerating phase of the wakefield driven by the first bunch. Loaded accelerating 

gradients of 150 MV/m were measured for the first time for a trailing short bunch. 

 When the drive bunch was blocked the witness bunch lost 1 MeV energy at the same 

density it gained 1 MeV before, thus implying a 315 MV/m unloaded accelerating 

gradient and an estimated 77% beam loading efficiency. 

 The energy shift of the witness bunch as a function of the plasma density (selected 

through the timed arrival of the beam with respect to the plasma discharge) agrees well 

with a simple 2D linear theory model. 

  



 
81 

 

For every complex problem there is an answer that is clear, 

simple, and wrong. 

  - Henry Louis Mencken 

 

Chapter 5  

Multibunch Schemes and 

Simulations 

In this chapter the theoretical framework of designing a multibunch PWFA accelerator will be 

analyzed. The difference compared to previous chapters is that now the wakefield is driven by 

more than one bunches (a witness bunch is still required to sample the generated wakefield). 

When using multiple bunches, by controlling their position and charge the accelerator can be 

tuned to either maximize the wakefield, the transformer ratio or the efficiency of the system. 

Specifically of interest for future PWFA-based colliders are schemes where the energy of the 

incoming witness beam is multiplied. In section 5.1 the various schemes will be analyzed in the 

linear regime, and particle-in-cell simulations using OSIRIS will be shown in section 5.2. In 

section 5.3 we will simulate an example of multiple drive bunches in the nonlinear regime.  

5.1 Multibunch Schemes 

In this section the basic principles of multibunch PWFA will be analyzed. Specifically, we will 

explore how, by adjusting the bunch spacing and the charge per bunch, that the plasma 



 
82 

 

accelerator can be tuned to maximize the wakefield, the transformer ratio or the efficiency. In 

the models we will utilize transversely Gaussian and longitudinally square bunches of the same 

width (with the exception of the witness bunch which may be shorter). Although longitudinally 

Gaussian shapes are more realistic, the square bunches do not have significantly different 

behavior (see Figure 2.4) yet they are much more tractable analytically and provide quick and 

easy physics insight in the process. 

 So let us assume a series of M  drive bunches with the same width w . The m th  

bunch has 
mN  particles, is placed at a position 

m  and has a transverse spot size 
r . This 

corresponds to the following beam density profile: 
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The function rect  has a value of 1 for w w   , ½ for w w    and 0 otherwise. The total 

longitudinal electric field is simply the superposition of the fields created by the individual 

bunches, which was given in equation (27), and is equal to 
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The transverse wakefield can be found from equation (10): 
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In the next few sections we will explicitly describe what can be achieved with different setups. 

5.1.1 Enhancing the Wakefield 

In order to create the maximum possible wakefield, the individual wakefields from each bunch 

need to be added in-phase. This occurs when the bunches are separated by one plasma 

wavelength1, placing each bunch in the decelerating phase of the wake created by previous 

bunches. This means that 

  1m pm    (52) 

The wakefield left after the bunches ( / 2M w   ) is then equal to (from (50)) 
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It is interesting to observe in this case that the number of particles per bunch does not affect the 

wakefield, as it simply adds together and the total wake is proportional to the total number of 

particles in all bunches. The focusing force at the center of bunch m  (  1m pm     ) is 

equal to 
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We observe that in addition to its own focusing force, each bunch will experience the force due 

to all the previous bunches. Thus, later bunches are focused stronger. 

 The tradeoff for the enhanced wakefield in this scheme is the reduction in the 

transformer ratio, which approaches unity as the number of bunches increases. For identical 

bunches ( 0mN N ) with transformer ratio 
0R , the total transformer ratio totR  is equal to 

                                                             
1
 More general, the separation can be any integer number of plasma wavelengths. 
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 (55) 

An example of a PWFA under such a setup is presented in Figure 5.1 where the on-axis beam 

density and wakefield of a 5+1 bunch system (5x30 pC drive bunches and 1 witness bunch) is 

shown. In this example pk w  , and the bunches are separated by 250 μm at 1.8×1016 cm-3 

plasma density ( 250p m  ). A relevant experiment that creates the bunches through IFEL 

using a laser is analyzed later in section 6.1. 

 The reason why the transformer ratio and the efficiency are not enhanced is because 

the last bunch feels the almost full decelerating field, while the early bunches feel a smaller 

decelerating field. In this example the transformer ratio is 1.1R   and the efficiency is only 

13%  (as defined in section 2.4.1). In order to increase the transformer ratio each bunch needs 

to feel the exact same decelerating field, and this is explored in the next section. 

 
Figure 5.1: Example of a multibunch plasma accelerator in a maximum wakefield setup. The bunches are 

identical with 
pk w   and are separated by one plasma wavelength apart. A witness bunch 180

o
 out of 

phase samples the accelerating wakefield. In this example 250p m   and 100r m  . 
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5.1.2 Enhancing the Transformer Ratio 

In order to maximize the transformer ratio, each bunch needs to be placed in the accelerating 

phase of the wake created by the preceding bunches, and its charge needs to be increased such 

that the total decelerating wakefield under each bunch is the same for every bunch. This 

scheme was suggested first by Laziev et al. [104] and more recently by Power et al. for a 

dielectric wakefield accelerator [144] and was demonstrated experimentally in a proof of 

principle experiment in 2006 by Jing et al. using two drive bunches [78, 79]. 

 The total wakefield under the m th  bunch is given by equation (50) 
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 (56) 

The last equality is set such that the wakefield under each bunch is equal to the wakefield under 

the first bunch (shifted by the location of the bunch center). By requiring the above expression 

to hold true for every  , a solution for the number of particles 
mN  for the m th  bunch and 

its center m  can be found. For example, for an arbitrary bunch width pk w , a solution for the 

number of particles and the location for the second bunch is 
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 (57) 

Under an arbitrary bunch width the bunches are not equidistant and their charge may not scale 

in a simple way – those values need to be evaluated numerically from equation (56).  

The most interesting case though is the one that maximizes the transformer ratio of the 

single bunch, i.e. pk w   for which 1 2R  . In this case the wake around each bunch is 
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symmetric with respect to its center and the equations are greatly simplified. In that special 

scenario it is found that the number of particles per bunch and their location scale in a simple 

way: 
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1

2 1
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p m p
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  

 (58) 

 

The decelerating wakefield under each bunch is now the same, and the envelope of the beam 

density of the bunches is a linear ramp, much like the continuous single-bunch linear ramp that 

is analyzed in Appendix B.2 . Equation (58) implies that the bunches must be placed 1.5 plasma 

wavelengths apart from each other1 and their charge must scale as  1 1:3:5: ...N  .  

 The total wakefield left after the drive bunches in the case where equations (58) is 

satisfied for the pk w   case is 

        
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k
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Note that the phase of the wakefield resets after each drive bunch. Using equation (56), the 

transformer ratio of the system is then 

 
12totR M M R    (60) 

The last equation summarizes the ultimate advantage of this scheme, since the transformer 

ratio of the system is proportional to the number of bunches used to drive the wakefield. 

 The transverse wakefield at the center of the m th  bunch is in this scenario equal to 

(from equation (51)) 

                                                             
1
 They can also be any half-integer number of plasma wavelengths apart. 
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Here / 2m w   . It is interesting to observe that although the system is designed such that 

the longitudinal wakefield is identical under each bunch, as equation (56) suggests, on the other 

hand the transverse wakefield is not the same for each bunch but it scales at their center 

quadratically with the number of drive bunches instead. This is a consequence of the fact that 

the total charge fed into the system scales also quadratically with the number of bunches, i.e. 

2

1totN M N  . As a result, later bunches experience stronger focusing force. 

 Figure 5.2 illustrates an example where a ramped bunch train of 4 drive bunches is fed 

into a 1.8×1016 cm-3 plasma. The bunches are separated by 1.5 plasma wavelengths apart and 

have a total charge of 500 pC, while their charges scale as  31 1:3:5:7pC . The transformer 

 
Figure 5.2: Example of a multibunch plasma accelerator in a maximum transformer ratio setup. The 

bunches are identical with 
pk w   and are separated by 1.5 plasma wavelengths apart. The total charge 

is 500 pC and in each bunch is increased linearly. A witness bunch equidistant to the other bunches 

samples the accelerating wakefield. In this example 250p m   and 100r m  . 
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ratio is 7.9 and the 1D driving efficiency of the system is 64%, equal to the efficiency of a single 

bunch. 

 Several things need to be pointed out in this figure. Although the total wakefield 

increases linearly with the number of bunches, similar to the maximum wakefield scheme of 

section 5.1.1, this occurs here by supplying quadratically more charge (as opposed to linearly 

more). The total wakefield amplitude per total unit charge put into the system scales inversely 

proportional with the number of bunches in the ramped bunch train scheme described here 

[87]. In addition, from an energy perspective, each particle is depositing into the plasma as 

much energy as the particles in the first bunch do, and the rest of its energy is being transferred 

to the following bunch in the train to prevent it from decelerating faster. In this way all the 

particles deposit their energy at the same rate (on average along the bunch), and the last bunch 

in the train releases this net energy into the plasma. 

 Note that the efficiency of the system is limited by the efficiency of a single bunch, 

which is achieved when the charge in each bunch is adjusted properly such that the wakefield 

under each bunch is the same. Even so, the variation of the wakefield inside each individual 

bunch sets an upper bound for the efficiency. This limit can be overcome (at the slight expense 

of the transformer ratio) if the positions and number of particles per bunch are fine-tuned, as 

we will show in the following section. 

5.1.3 Enhancing the Efficiency 

Gaussian, square and other realistically-shaped bunches have maximum single bunch 

efficiencies around 60% - 70%, depending on their width relative to the plasma density. This is 

the maximum fraction of their energy that can be transferred to the plasma. Even if the 
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transformer ratio is maximized, as was explored in section 5.1.2, the efficiency is never larger 

than the single bunch efficiency for those setups. 

 It is possible however using multiple drive bunches to obtain a total system efficiency 

that is larger than the individual bunch efficiency, without a need to specially shape the 

bunches. This is achieved by placing the bunches at those phases of the wakefields such that the 

total wakefield under each bunch is most flat (thereby depositing energy more efficiently), even 

if the wakefield is not exactly the same between bunches. Notice in Figure 5.2 for example, 

there are particles inside each bunch that experience an almost zero wakefield (near the edges), 

while other particles near the center of the bunches experience the full decelerating field. This 

can be avoided if the bunches are placed earlier in the wakefield such that they sample both a 

portion of the decelerating phase of the wakefield and a portion of the accelerating phase as 

 
Figure 5.3: Example of a multibunch plasma accelerator in a maximum efficiency setup. The bunches are 

identical with 0.56pk w   and are separated by 1.28 plasma wavelengths apart. The charge in each 

bunch is  17.5 1: 2.70 : 5.20 :8.22pC . A witness bunch samples the accelerating wakefield. In this 

example 250p m   and 100r m  . The driving efficiency of this system is 84% and the transformer 

ratio is 5.14. 
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well, with the number of particles per bunch is adjusted accordingly. Such an example using 4 

drive bunches is shown in Figure 5.3.  

In this scenario the bunches are equidistant and separated by 1.28 plasma wavelengths 

apart, and the total charge is 300 pC and scales as  17.5 1: 2.70:5.20:8.22pC  in each bunch. 

Those optimal values are found numerically by running an optimization routine for the efficiency 

as a function of the bunch separation and the bunch charges. Further enhancements (few %) 

can be achieved if the restriction for equidistant bunches is lifted. The 1D driving efficiency of 

the plasma accelerator shown here is 84%, while the transformer ratio is 5.14 (instead of the 

theoretical maximum of 8 for 4 bunches). 

It is interesting to observe the physics of this interaction. In contrast to the maximum 

transformer ratio scheme of the previous section, the wake under each bunch is not identical 

anymore. The first bunch experiences a weaker decelerating wakefield for example. However 

this is allowed here because from an energy perspective the first bunch is not as important as 

the later bunches that carry more energy and affect the efficiency more significantly. In essence, 

the first bunch jump-starts the wake such that the second bunch will sample a more flat portion 

of it. Shorter bunches increase the efficiency further as they sample narrower portions of the 

sinusoidal wakes. 

5.2 Meter-scale Simulations of a Multibunch Accelerator 

So far in this chapter we have been limited to the initial wakes generated by multibunch 

electron drivers. These waves are valid at time 0t  , before the beam starts to evolve inside the 

plasma. In reality though the plasma will generate transverse forces that will act on the beam 

and unless the beam is matched the longitudinal wakefield structure will be disrupted after a 
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few mm of propagation in the plasma. In the blowout regime the beam is more stable along the 

plasma propagation because the lack of electrons creates a radially linear focusing force to 

which the beam emmitance or thermal spread can be matched, however those longitudinal 

wakefields excited cannot be efficient for multibunch drivers (see section 5.3). It is the purpose 

of this section to show that in the linear regime, even though (ironically) the transverse forces 

are not linear, a high-transformer-ratio wakefield structure can be maintained over long 

distances. The scenario analyzed in section 5.1.2 under the conditions of equation (58) will be 

explored. 

5.2.1 Multibunch Emmitance Balancing 

We seek to find a “matched” or balanced emmitance for each drive bunch such that they remain 

as stable as possible and the wakefield is not altered significantly as the bunches propagate in 

the plasma. In the linear regime examined here, and assuming that the bunches have 

transversely Gaussian shape, the matched emmitance along the bunch was analyzed in section 

2.2.2 and is given by equation (18), where the function  Z   is the longitudinal component of 

the transverse wakefield which was found in equation (61). The matched emmitance along the 

longitudinal beam profile of the m th  bunch is then 

         
21
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N p m r r
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m k I
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 (62) 

Under realistic terms, one might attempt to match in an average way the emmitance at the 

center of each bunch, 
m  : 
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The value of  rI   is given for transversely Gaussian bunches in Figure 2.2. It should be noted 

that the value given from the above formula is approximate, as the bunch will eventually evolve 

and the assumptions under which this formula was derived (e.g. transversely Gaussian bunches) 

will not hold. Still, it serves as a good starting point. Note that all such transverse nonlinear 

focusing effects can be avoided if a hollow plasma channel is utilized [34], thus avoiding the 

need to adjust the emmitances. 

5.2.2 Simulation Results 

The parameters of the multibunch accelerator that is modeled in 2D OSIRIS are as follows. The 

plasma has a neutral density of 2×1017 cm-3 and a length of 50 cm. 4M   drive bunches have 

longitudinal widths of pk w   (37.5 μm), transverse spot sizes of 2.4p rk    (28.6 μm), initial 

energy of 
52 10    (102.25 GeV), and are separated by 1.5 plasma wavelengths or 112.5 μm. 

Their charge scales as  62 1:3:5:7pC  for a total of ≈1 nC of drive charge, which corresponds 

to normalized beam densities of 
0/ 0.01 [1:3:5:7]bmn n   , thus placing the interaction into the 

linear regime. The transverse emmitances of the drive bunches where tuned according to 

equation (63) to the values / 22: 22: 45:67N r  
1. A short and narrow test witness bunch 

with 5 pC charge, width / 4p wk w   (9.4 μm), transverse spot size 0.2p wk    (2.4 μm) and 

same energy is placed another 1.5 plasma wavelengths after the last drive bunch, at the peak of 

the accelerating phase of the wake ( 0/ 0.3bwn n   for that bunch). 

                                                             
1
 Realistic thermal spread was added to the first bunch to prevent its tail from collapsing under its own 

focusing force. 
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The results of the simulation at the entrance of the plasma are shown in Figure 5.4. 

Using now the theoretical background that was detailed in the previous chapters of the 

dissertation we can make estimations for the system and compare them with the simulations. 

The theoretically predicted transformer ratio is 8 (from equation (60)), the driving efficiency is 

64% 55% 35%        (from equation (28) and Figure 2.3) and the wakefield amplitude 

after the bunches is equal to 2.8 GV/m (from equation (59)). In the simulation the transformer 

ratio is 7.2, and the on-axis wake amplitude 2.9 GV/m. We also observe that the focusing force 

 
Figure 5.4: Simulation of 4 drive bunches in the linear regime at the entrance of the plasma. Top left 
panel: On-axis electron beam density (green area), longitudinal on-axis electric field (blue line), on-axis 
beam density (black line) and on-axis plasma density (gray line). Top right panel: 2D dependence of the 

electron beam density (in units of 
0n ). The white line shows the on-axis longitudinal position of the drive 

bunches, and the gray line (on the left) the summed transverse profile. Bottom left panel: Beam phase 
space p-z (in units of mc ). The blue line shows the longitudinal position of the bunches. Bottom right 
panel: The 2D dependence of the focusing force of the plasma. 
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(in the bottom left panel) increases with each bunch and also varies within each of them, as 

predicted by equation (61). Overall the agreement between theory and simulation is very good. 

The simulation results after 43 cm of plasma are shown in Figure 5.5. The wakefield and 

the transformer ratio oscillate during the length of the plasma but on average they remain 

stable, probably a result of the chosen emmitances for the bunches. In the snapshot shown here 

the transformer ratio is 5.3 and the wakefield amplitude is 3.5 GV/m, since the bunches have 

slightly focused (especially near the tails). The most intriguing result of course is shown in the 

 
Figure 5.5: Simulation of 4 drive bunches in the linear regime after a 43 cm long plasma. Top left panel: 
On-axis electron beam density (green area), longitudinal on-axis electric field (blue line), on-axis beam 
density (black line) and on-axis plasma density (gray line). Top right panel: 2D dependence of the electron 

beam density (in units of 
0n ). The white line shows the on-axis longitudinal position of the drive bunches, 

and the gray line (on the left) the summed transverse profile. Bottom left panel: Beam phase space p-z (in 
units of mc ). The blue line shows the longitudinal position of the bunches. Bottom right panel: The 2D 
dependence of the focusing force of the plasma. 
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bottom left panel which depicts the energy of the bunches, where we observe that the witness 

bunch has gained 3 / 0.5 1.5GeV m m GeV  , while the drive bunches have lost only 

1.5/ 6 0.25GeV  each, thus demonstrating the high-transformer ratio scheme. 

The beam loading was kept light in this simulation in order to preserve the energy 

spread of the witness bunch. For the given witness bunch parameters, we can calculate the ratio 
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Here 
wE  and 

0E  are the longitudinal components of the wake amplitudes left behind by the 

witness bunch and drive bunches alone, respectively (defined in equations (40) and (41)), and 

 2sin / 2w p wr k w  & 2totR M   are their corresponding transformer ratios. Then, using 

Figure 2.7 we can estimate the total beam loading efficiency to be 10%b   (since 
0/ 0.1w  

). The longitudinal energy spread is estimated through the ratio 
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The parameters shown here are defined in section 2.5.1. From Figure 2.5, the 3-σ longitudinal 

energy spread is estimated 25%wf    and the transverse energy spread (from Figure 2.8) is 

negligible since the witness bunch was made 10 times narrower than the drive bunches. 

5.3 Multiple Drive Bunches in the Blowout Regime 

In this section we will explore the possibility of using multiple drive bunches to enhance the 

transformer ratio and the efficiency in the highly nonlinear regime, where the bunches are 

strong enough to blowout all the electrons near them. Attempting to extend the techniques 

used in the linear regime, we place each subsequent drive bunch in the accelerating phase of 
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the wakefield driven by the previous bunch, while at the same time ramping its charge so that 

the total wakefield in the center of the bunch is the same for all bunches, and the bunches 

deposit their energy at the same rate. 

 This scheme is examined through OSIRIS simulations only, since it is an analytically 

intractable scenario. The plasma density is set to 0n  2.0×1017 cm-3. There are 3 drive bunches 

that have bi-Gaussian shapes with 6.7 μm spot sizes (in either dimension), and their charge 

 
Figure 5.6: Simulation of 3 drive bunches in the blowout regime. Top left panel: On-axis electron beam 
density (green area), longitudinal on-axis electric field (blue line), on-axis beam density (black line) and on-
axis plasma density (gray line). Top right panel: 2D dependence of the longitudinal electron field. The 
white line shows the longitudinal position of the drive bunches. Bottom left panel: Plasma density real 

space (in units of 
0n ). The white line shows the longitudinal position of the bunches, and the gray line (on 

the left) shows the transverse profile of the bunches. The red line shows the plasma density on-axis. 
Bottom right panel: The 2D dependence of the focusing force of the plasma. 
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scales as 135:405:675 pC. This corresponds to normalized beam densities of 

0 0/ 2.5:7.5:12.5bn n  . The second bunch is placed 45 μm after the first, and the third bunch is 

placed 55 μm after the second bunch. This non-equidistant placement was found empirically 

and it is necessary because of the frequency shift that increases with higher drive charges in the 

nonlinear regime, which results from the electrons being blown out at larger radii from the axis, 

thus increasing the wavelength of the oscillation. The results from the simulation after 2 cm of 

propagation in the plasma are shown in Figure 5.6.  

We observe (top left panel) that although the on-axis wakefield at the center of each 

bunch is the same (blue line), it varies greatly along the length of each bunch. This is because in 

the nonlinear regime, the wakefield from highly-accelerating becomes highly-decelerating inside 

each bunch, resulting in the front of each bunch gaining energy and the tail of each bunch 

depositing energy. This sharp dichotomy is clearly observed when looking how the 2D r-z 

dependence of the longitudinal wakefield (top right panel) varies inside each bunch, thus 

reducing the driving efficiency and the transformer ratio which is only 1.5 in this example. This is 

in stark contrast with the linear regime where the wakefield inside each bunch is always linear, 

i.e. a section of a sinusoidal function, which at worse has a slope of pk 1. 

 The bottom left panel of Figure 5.6 shows the plasma density real space r-z. The 

blowout region is clearly visible, and it is interesting to notice the electrons that are expelled 

away from the first bunch, which are then returning to the axis but they are blown out again at a 

greater radius by the second bunch. When the ions still attract them back, they are blown away 

for a third time by the third (and strongest) bunch. Only after that last bunch do the electrons 

have a chance to return back to the axis creating a density spike and a peak electric field of 

                                                             
1
 This occurs near the zero-crossing of the wakefield. 
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30 GV/m. Finally, the bottom right panel shows the 2D transverse focusing wakefield along the 

bunch dimensions. 

 We conclude that because of the nonlinearities in the blowout regime the wakefield 

inside each drive bunch cannot be made flat and thus the efficiency and the transformer ratio 

are not enhanced in the same way they do in the linear regime using simply unshaped bunches. 

The most probable workaround to resolve this is to utilize shaped bunches, such as a single long 

triangular bunch or multiple properly shaped drivers. Those drivers will most likely require a 

delta-function-like front in order to bring the wakefield from accelerating to decelerating inside 

the rest of the bunch. However, for regularly shaped bunches (e.g. Gaussians, flat-tops) the 

linear regime is more favorable. Finally, a combination of the two regimes where the driving of 

the wakefield occurs in the linear regime and the beam loading in the mildly nonlinear regime 

may also be optimal. 

5.4 Chapter Conclusions 

The following items are concluded from this chapter: 

 By placing multiple drive bunches separated by an integer number of plasma 

wavelengths apart the wakefields add resonantly and the amplitude is maximized and 

increases linearly with the total charge in the beam. The transformer ratio and efficiency 

are minimized. 

 By placing multiple drive bunches at the accelerating phase of the wakefield driven by 

preceding bunches, then by adjusting the charge in each bunch the wakefield under 

each bunch can be made equal, thus increasing the transformer ratio beyond two which 

now scales linearly with the number of bunches. Single bunch efficiencies are obtained. 
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 By fine-tuning the position and charge in each bunch the system can be more efficient 

than a single bunch system without shaping the bunches, at a slight expense of the 

transformer ratio. An example with efficiency 85% and transformer ratio 5.1 is 

presented using 4 drive bunches. 

 By linearly increasing the emmitance on each subsequent bunch, 4 bunches are tuned to 

balance the transverse focusing force of the plasma and propagate over 43 cm of 

2×1017 cm-3 density plasma while maintaining a transformer ratio of 6 in a 2D OSIRIS 

simulation. 

 These schemes cannot simply be extended into the nonlinear regime because the wakes 

change very abruptly and each drive bunch experiences both energy loss and energy 

gain. This may be circumvented by shaping the bunches. 
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In theory, there is no difference between theory and practice;  

in practice, there is. 

 - Chuck Reid 

 

Chapter 6  

Multibunch Experiments 

The use of multiple drive electron bunches to excite plasma waves has been limited to only two 

notable sets of experiments, mainly due to the unavailability of multiple ultra-short drivers. 

Berezin et al. in the 1970s have reported the use of a series of 2 MeV electron bunches in 

1011 cm-3 density 1 m long plasma and observed gradients of 0.25 MV/m [17, 176]. Similar 

experiments were conducted in the KEK 500 MeV linac in Japan, where 6 drive bunches were 

fed into a 1 m long 5×1012 cm-3 plasma and up to 20 MV/m gradients were recorded [126, 132, 

133]. In both cases there was very poor agreement between the results and the theoretical 

predictions. The bunches were separated by the linac RF electric field, which corresponds to 

several hundred picoseconds period. The goal of those experiments was to excite resonantly 

wakefields in the plasma. Such strategies can have interestingly high gradients only when high-

density plasmas are used, which is not possible using the above mentioned technique to 

generate the bunches.  

In this chapter, we will investigate two methods to excite large wakefield resonantly. 

The first uses ≈100 ultra-short bunches in 1019 cm-3 plasmas created through the use of the 
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Inverse Free Electron Laser (IFEL) bunching technique. This method will be analyzed in section 

6.1. The second method for creating subpicosecond bunches uses a mask technique to 

selectively block portions of the initial beam profile. This method offers the advantage of 

creating adjustable charge per bunch and adjustable spacing between the bunches (along with 

the creation of a witness bunch), thus bypassing the IFEL method limit which is restricted to 

bunch separations fixed to the laser wavelength only. Beam diagnostics and beam-plasma 

interactions results using this method will be presented in sections 6.2 and 6.3, respectively. 

6.1 Resonant Wakefield Excitation with IFEL 

The experimental setups described in this section explore the possibility of creating GV/m 

wakefields by modulating a single electron beam through IFEL and then feeding the created 

bunches into a high-density plasma [88]. The motivation and beam-plasma simulations along 

with diagnostics of the microbunched beam will be presented here. The experiments took place 

at the Accelerator Test Facility (ATF) of the Brookhaven National Lab.  

6.1.1 Motivation and Theoretical Background 

Given an electron beam with a fixed charge and transverse dimensions, what is the optimal 

beam distribution that will excite the strongest wakefield in the plasma? Since the plasma 

operates as a simple harmonic oscillator in the linear regime, the wakefield amplitude will be 

maximized when the plasma is driven to its resonance by a periodic force with a frequency equal 

to the natural oscillation frequency of the system, i.e. the plasma frequency. This suggests that 

the use of a series of microbunches separated by a distance equal to the plasma wavelength p  

to be driven into such a plasma. For M Gaussian drivers, the beam density would be then given 

by 
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Here jA  is the normalized amplitude of each microbunch and j pj   for resonant interaction. 

The response of the plasma to such a driver is shown in Figure 6.1, an example modeled after 

the beam parameters at ATF. 

The initial broad Gaussian-like beam distribution is shown on the top left panel, along 

with its plasma response in the top right panel for various plasma densities. For a 1×1014 cm-3 

peak beam density, the plasma wakefield excited is around 100 MV/m. In the bottom left panel, 

the same total charge of the beam is distributed into a series of microbunches, separated by a 

distance 10.6 μm. The plasma response on the bottom right panel shows some new interesting 

features. Although the beam envelope response remains at the low densities (since the plasma 

 
Figure 6.1: The plasma wakefield amplitude response of a non-bunched beam (top) and of a 
corresponding microbunched beam (bottom) of equal charge. The bunch separation is 10.6 μm and the 
microbunch length 1 μm FWHM. 
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wavelength is too large to resolve the microbunches), when the plasma density is such that the 

plasma wavelength matches the separation of the bunches (here this happens at a 1×1019 cm-3 

density) then each bunch creates a wakefield which adds constructively and drives the total 

wakefield in a resonant manner. The amplitude is now almost an order of magnitude larger, 

more than 800 MV/m, limited by the finite size of the microbunches and the residual charge 

between the peaks. 

 Also visible are the harmonics of the interaction, appearing at densities 4×1019 cm-3, 

9×1019 cm-3 etc, where the plasma wavelength is an integer multiple of the resonant wavelength 

and there is now a microbunch placed every two, three or more periods of the plasma wave. 

The decreasing amplitudes of those resonances reflect the finite width of the microbunches and 

are determined by the Fourier transform of the microbunch Gaussian-like shape (a series of 

delta functions would create harmonic responses of equal amplitude). 

6.1.2 Experimental Setup and Simulations 

The idea of resonantly generating an enhanced wakefield is sought after experimentally at ATF1. 

There are two main parts in achieving the goal, 1) create equally spaced microbunches and 2) 

generate the corresponding resonant plasma density. A proposed experimental setup is shown 

in Figure 6.2. 

 The process for creating the microbunches is the Inverse Free Electron Laser (IFEL) , 

whereby an unmodulated electron beam and a long laser pulse are fed co-propagating into a 

magnetic wiggler [27, 101, 137]. The longitudinally sinusoidal-dependent static magnetic field 

inside the wiggler causes a perpendicular force on the beam electrons and initiates electron 

motion in the transverse plane. Using this transverse motion the electron beam can be coupled 

                                                             
1
 This idea was initially suggested by Ilan Ben-Zvi. 
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to the laser pulse (by tuning the wiggler field period) such that some electrons feel the 

decelerating electric field of the laser and some other the accelerating field [38]. This picture of 

half-acceleration and half-deceleration repeats over every laser period along the beam length 

and results in a velocity modulation of the beam electrons [162]. After the exit of the wiggler the 

beam is left to propagate in vacuum over some specific distance, after which the low-velocity 

electrons have caught up with the high-velocity electrons thus creating microbunches, 

separated at the laser’s wavelength [111]. In this experimental setup a 10.6 μm CO2 laser at 

50 MW power is used [96, 97, 163].  

The required optimal bunching distance 
0s  for an electron beam with a given   is 

determined by the condition that electrons compress but never outrun each other, i.e. their 

 
Figure 6.2: Experimental setup of resonant multibunch experiment at ATF. The unmodulated electron 
beam is inserted co-propagating with a CO2 laser in the IFEL wiggler microbuncher. The output modulated 
beam is then fed into a high-density plasma, and the energy change imparted onto the beam is imaged 
with a spectrometer on a phosphor screen. 
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relative drift distance within a laser period s  is less than a quarter of the plasma wavelength. 

This is described by the formula 
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Here q  is the fractional initial energy modulation imparted on the electrons at the exit of the 

wiggler, determined by the laser electric field. The approximate expression above holds true for 

small modulations and large  ’s. For the 45 MeV ATF electron beam ( 100  ) the required 

drift distance for 1%q   modulation is estimated at 
0 2.7s m  for the given laser parameters. 

 As we will present in the next section, such microbunches have been successfully 

created and measured at ATF. The relative dependence of generated plasma wakefield 

 
Figure 6.3: Dependence of the relative resonant wakefield amplitude on the microbunch longitudinal spot 
size for a plasma with a 10.6 μm wavelength. 
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amplitude on the Gaussian microbunch quality (i.e., their width) is shown in Figure 6.3 for a 

10.6 μm plasma wavelength and bunch separation distance. 

The simulated wakefield response on-axis for the multibunched ATF beam is shown in 

Figure 6.4 when the plasma density is exactly on resonance, 1.0×1019 cm-3. The wakefield 

amplitude versus time is calculated using the fully explicit code OSIRIS, as well as the much 

faster quasi-2D code ThemOsiris, and they are shown to agree well. The wakefield amplitude 

resonantly excited from the 500 pC 35 μm spot size beam is 7 GV/m in this scenario. Since the 

individual wake from each bunch is added constructively, only the total charge that is fed into 

the plasma is important and not the charge distribution per bunch. Therefore, the wakefield 

amplitude at a given time is proportional to the integral of the charge up to that time. 

 
Figure 6.4: Simulated plasma wakefield amplitude response on-axis after the beam has fully entered the 
plasma. 1) Multibunched beam density 2) ThemOsiris calculated wakefield 3) OSIRIS calculated wakefield. 
For a transverse spot size 35 μm (shown here) and 500 pC of total charge, the generated wakefield 
amplitude is 7 GV/m. The plasma density is 1×1019 cm-3 .  
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It is interesting to look at the electron energy spectra after a 15 mm long plasma 

interaction, both on and off resonance. This is shown in Figure 6.5, for a case exactly on 

resonance and for a case with a plasma density 3% off resonance, along with the relative phase 

of the wakefield with respect to the beam microbunches. 

We observe that the energy shifts drop sharply even slightly off resonance, as is 

apparent also from Figure 6.1: the resonance width is inversely proportional to the number of 

microbunches. For 100M   or more bunches seen here, the resonance width is on the order of 

1/ 1%M  , and the higher wakefield is obtained at the cost of a narrower resonance. In 

addition, in Figure 6.5 (left panel) we observe that the accelerating wakefield occurs only in 

between the bunches, thus the accelerated electrons are the residual particles outside the 

microbunch peaks (roughly 10% of the total charge using this IFEL scheme). In the slightly off 

 
Figure 6.5: Energy spectra of the 45 MeV microbunched beam for a plasma density exactly on resonance 
(left) and 3% off resonance (right). The initial energy spread is 0.1 MeV. The bottom of the figure shows 
the relative phasing between the bunches and the wakefield near the tail of the beam (the charge is too 
low to enhance the wakefield visibly). 
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resonance case though (right panel), the energy gain is much larger and comparable to the 

energy loss since the wakefield now partially cancels out in each bunch, resulting in larger 

number of accelerating particles compared to the on-resonance case. This may be a welcome 

tradeoff for the experimenter. 

Ultimately, the crucial item in such an experiment is to obtain a reliable high plasma 

density with very high accuracy (1% or better). This is not straightforward since in typical plasma 

sources such as capillary discharges (see Chapter 3) the density varies by several orders of 

magnitude in microsecond timescales. 

6.1.3 Diagnostics of the Multibunched Electron Beam 

In order to diagnose the quality of the microbunching of the IFEL modulated electron beam, we 

collected the CTR emitted when the microbunches traverse two 1 μm thick titanium foils [177]. 

CTR is emitted because the electric fields of the electrons in the beam displace violently the free 

electrons in the metal surfaces, which in turn radiate due to the acceleration they suffer. 

In the experiment, the first metal foil was placed perpendicular to the beam direction of 

propagation and served the purpose of blocking the CO2 radiation used to drive the IFEL, since it 

could interfere with the CTR signal measurement.  The second foil was placed at 45o with 

respect to the direction of propagation and emitted radiation through a window out of the 

beamline.  The sum of the radiation emitted from both foils was collected. 

In contrast to the CTR interferometry technique used in the experiment described in 

Chapter 4 (see section 4.2.1 and Appendix C.4), the microbunch spacing here was too short to 

be resolvable using interferometry. The spectrum of the CTR radiation was recorded instead, 

since it contains information about the longitudinal current profile of the electron beam. 

Specifically, the on-axis spectrum is proportional to the amplitude-squared of the Fourier 
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transform of the current profile of the beam (see Appendix C.3). For a beam density defined in 

equation (66), the bunch form factor (which determines the CTR spectrum) is given by the 

formula 
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Here 2 /k    is the wavenumber of the radiation,   is the radiation angle with respect to 

the radiation propagation direction 1 , 
r  is the radial spot size of the beam, 

z  is the 

longitudinal spot size of each microbunch, M  is the total number of microbunches, jA  are 

their relative charge amplitudes, and j pz j  are their longitudinal locations. 

                                                             
1
 The detector has a surface area large enough to capture the radiation emitted at most of the angles. 

 
Figure 6.6: The spectrum of the CTR emitted when the microbunched electron beam passes through a 
metal foil.  
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The geometry of the electron beam is uniquely mapped into its CTR spectrum, which is 

shown on-axis in Figure 6.6 (for the beam profile shown in Figure 6.4).  The low frequency (long 

wavelength) radiation on the right corresponds to the envelope of the beam.  For other 

wavelengths, the radiation in general adds out-of-phase except at the harmonics of the 

separation wavelength 0 10.6 m   between the microbunches, 0 / , 1,2,...m m m    . The 

existence of radiation at each harmonic is therefore the result of the periodicity of the 

microbunch train. Finally and most importantly, the amplitudes of these harmonics are 

modulated by the Fourier transform of each microbunch, which is assumed to be a Gaussian 

profile. Therefore, the measurement of the amplitude ratio between these harmonics provides 

a direct way of estimating the microbunches’ width. 

 
Figure 6.7: Ratio of energy collected in each harmonic of the CTR spectrum for various microbunch 
widths. The solid colored curves correspond to the theoretical predictions. The arrows on the left depict 

the experimentally recorded data. The three sets of data agree at the region around 0.7z m  . These 

ratios include the response of the detector and the transmission of the filters. 
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In order to collect the CTR, a helium-cooled bolometer detector sensitive between 3 μm 

– 20 μm wavelengths is used.  Furthermore, narrow Gaussian band-pass filters with roughly 0.5 

μm FWHM transmission were used to isolate the radiation of the first, second and third laser 

frequency harmonics, in successive measurements.  After recording about 100 events at a 

roughly constant IFEL laser pulse energy (within a factor of 2) at all three harmonics, we 

calculated the three possible ratios of the signals.  The data range for each ratio is shown on the 

vertical axis in Figure 6.7.  

Using equation (68) for small angles ( 0  ) and after accounting for the response of 

the detector and the filters, we calculated the expected theoretical ratio between the energy 

radiated under each of the harmonics as a function of the microbunches’ widths.  These three 

predicted ratios are also plotted in Figure 6.7. The data show that the measured ratios indicate a 

microbunch width around 0.7 0.1z m   , in good agreement with the predicted value of 0.5 

μm.  Although the microbunch width was inferred using CTR before [111], this is its first direct 

measurement that also utilizes the information from different harmonics.  

In order to confirm the 10.6 μm separation between the microbunches, the IFEL drive 

laser was tuned to 10.2 μm, while still using the same narrowband 10.6 μm filter to detect the 

CTR.  In that case the signal recorded was at least 100 times less than when the IFEL was driven 

at 10.6 μm and very close to the noise level of the detector, thus confirming the periodicity of 

the bunching at the laser wavelength only. 

6.2 Generation of Microbunch Trains by Masking Chirped Beams 

In this section we will describe a method for creating subpicosecond microbunches with 

adjustable spacing, which are required for most of the experiments described in this chapter. 
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Previous multibunch PWFA experiments relied on the different bunches to be created by very 

long beams being placed and bunched over different RF buckets in the linac [17, 79, 135]. Since 

those fields are in the microwave range, very low plasma densities had to be used (1011 cm-3 – 

1013 cm-3) in order for the plasma wavelength to be comparable with the bunch spacing, thus 

reducing the accelerating gradient significantly (which depends on the square root of the plasma 

density – see equation (2)). A future PWFA collider will require GeV-scale wakefields, which can 

only be achieved at high densities (1016 cm-3 and above). The plasma wavelength at those 

densities is on the order of 1 ps or less, and as a result a multibunch PWFA accelerator requires 

bunches separated at subpicosecond-scale spacing, a challenging process [155]. 

 One method to create such microbunches is outlined in section 6.1.2 using velocity 

bunching after an IFEL interaction. However, in this case the spacing is not adjustable because it 

is fixed by the laser’s wavelength. The method illustrated in the following section 6.2.1 uses a 

metal mask in a high-dispersion plane of the accelerator to create microbunches and does away 

of those limitations. CTR diagnostics of the output microbunches will be then presented from 

proof of principle experiments in section 6.2.2. 

6.2.1 Mask Method 

The principle of generating a train of microbunches is shown schematically in Figure 6.8. The 

electron beam enters the “dog-leg” portion of the beamline having a correlated energy spread 

along its length. In the case shown here, the front of the beam (“F”) has a lower energy than the 

back of the beam (“B”). The first dipole disperses the different energies of the beam in space, 

and thus the energy-time correlation becomes also energy-space correlation. Subsequently, the 

metal mask that consists of a periodic set of metal wires is placed along the path of the beam, 

thus spoiling the emmitance of the particles that hit upon the solid parts of the mask which are 
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then lost along the beam transport line. The energy-space microbunches then become energy-

time microbunches when passing through a second dipole that removes the energy-space 

correlation of the beam. 

 The advantage of this technique is that the mask is fixed in space and therefore the 

microbunches are extremely stable, affected only by the incoming beam variations. The initial 

correlated energy spread can be introduced by accelerating the beam off the crest of the linac 

RF wave. The number of bunches can be selected by tuning the width of a limiting energy slit 

aperture, thus selectively blocking some parts of the initial beam. The width of the bunches can 

be selected by tuning the width of the wires on the mask. Note that a fraction /d D  of the 

initial beam charge is lost after hitting the mask, where D  is the separation between the wires 

on the mask and d  their individual width. In addition, the shadow that is cast by the mask is 

crisp as long as the finite transverse size of the beam at the mask, 
x , which is determined by 

its emmitance 
N , is much smaller than the individual wire width: 

 
Figure 6.8: Left panel: Simplified schematic of the microbunch generation technique using the mask. The 
beam with a correlated energy spread enters the dog-leg on the left, is dispersed in space, goes through 
the mask, and then is brought back to energy-time correlation. The letters “F” and “B” stand for the front 
and back of the beam, respectively. Right panel: microbunch structure created by the wire mask in both 
time and energy. Source: P. Muggli. 
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Here 
x  is the beam beta function at the location of the mask, 

N  is the normalized emmitance 

of the beam, and   is its relativistic parameter.  

The distance between the microbunches is selected through the fractional energy 

spread imparted on the beam, 
0/E E , with 

0E  being the mean beam energy, for a given 

dispersion of the beam at the mask ,x mask . Specifically, the longitudinal length of the beam at 

the exit of the dog-leg is 
56 0/z z R E E     , where 

56R  is the dog-leg longitudinal dispersion 

function and 
z  is the beam length before the dog-leg. The transverse size 

xL  of the beam at 

the mask is a combination of its intrinsic beam size /x x N     and the dispersion width 

added by the magnets, 0/mask E E   . The mask is placed at a high-dispersion and low 
x  

plane along the beamline such that x    and thus 
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Therefore the number of microbunches is /bN D  and thus the bunch separation is given 

by the formula 
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Although the mask here is periodic and the bunches are equidistant, a non-periodic mask with 

properly designed solid parts can be used to generate bunches at any position and with different 
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mount of charge in each bunch. This is ideal for the multibunch setups explored in this chapter, 

especially for the creation of out-of-phase witness bunches.  

6.2.2 Beam Diagnostics 

In order to experimentally verify the generation of microbunches, CTR interferometry was 

employed in proof-of-principle setups at ATF [124]. This is similar to the technique described in 

section 4.2.1 that was used to diagnose the bunches in the double-bunch experiment, and is 

analyzed more in Appendix C.4. The CTR signal that is emitted when the bunches pass though a 

copper mirror is collected and sent through an interferometer that auto-correlates the signal in 

time. This auto-correlation time-integrated trace is recorded for different path lengths inside the 

interferometer by a liquid helium cooled silicon bolometer detector. A train of N  equidistant 

bunches is expected to yield a symmetric trace with 2 1N   peaks. 

 
Figure 6.9: Left panel: Microbunches generated with the mask method dispersed in energy, for two cases 
with different number of bunches. Right panel: Auto-correlation time-integrated CTR traces as a function 
of the interferometer arms path length. N=3 bunches with 1.4% energy spread and N=4 bunches with 
3.4% energy spread are shown. Source: P. Muggli. 
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 For the experimental setup at ATF, the mean beam energy was 
0 58E MeV , the 

dispersion of the beam at the mask was , 1.4x mask m  , the initial envelope bunch length was 

1650z m  (or 5.5 ps full width at half maximum), and the dog-leg dispersion was 

56 4R cm  . The total beam charge was 500 pC , the typical energy spread on around 1%  and 

the beam emmitance was 2N mm mrad   . The mask was made of circular steel wires of 

diameter 500d m  and separation period of 1270D m . For this beam 140x m   and 

condition (69) is moderately satisfied, while (70) is easily satisfied. 

The left panel on Figure 6.9 shows the energy distribution profile of the beam after 

dispersed at the spectrometer at the end of the beamline, for 
0/ 0.5%E E  . By changing the 

width of the limiting slit either 6 or 7 bunches could be selected. The modulation of the number 

of particles per bunch reflects the initial profile of the incoming beam. 

The right panel on Figure 6.9 shows two CTR auto-correlation traces for two incoming 

bunch parameters with energy spreads 1.5% & 3.4% and 3N   & 4N   bunches, respectively. 

The number of peaks in the traces is 5 and 7, in agreement with the 2 1N   expectation value. 

The distance between the bunches is measured from the distance between the peaks in the 

traces (shown in the inset panel), and corresponds to 434 22 m  and 216 60 m , 

respectively. Note that because only a portion of the CTR spectrum could be collected (low 

frequencies), the auto-correlation traces are not ideal and they have values smaller than the 

average. However this does not affect the bunch separation measurement. The above measured 

bunch periods are correctly predicted by equation (71) considering that the full width of the 

beam is a few times the quoted 
z  value. 
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Finally, an example shot of the energy spectrum of the beam with 3 drive bunches and 

one witness bunch out of phase is shown in Figure 6.10. The rest of the bunches have been 

blocked by limiting energy slit. Notice that the separation of the drive bunches in energy E  is 

fixed by the period of the wires D  for a given beam energy 
0E  through 

0 / maskE E D    . 

6.3 Beam-Plasma Interactions Using the Mask 

A series of experiments at the ATF have the goal of demonstrating proof-of-principle PWFA 

accelerators using multiple drive bunches. We will present here some simulations and 

experimental results specific to the ATF parameters, using the bunch generation technique 

described in the previous section. In the set presented here the drive bunches and the plasma 

density are adjusted such that the accelerator works in the maximum wakefield setup (see 

section 5.1.1) since we wish to first detect the maximum possible effect of the plasma on the 

bunches, and thereafter increase the transformer ratio in a future second set of experiments. 

 
Figure 6.10: Electron energy spectrum of the bunched beam with 3 drive bunches and one strong witness 
bunch (out of phase) as recorded at the energy spectrometer at the end of the beamline. This is a 
favorable setup for a PWFA experiment. The horizontal axis is increasing energy to the right, while the 
vertical axis contains beam transverse profile information. 
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6.3.1 Predicted Response 

The predicted plasma response as a function of the plasma density is shown in Figure 6.11. In 

the no-mask case the single 300 pC 4 ps long ATF electron beam is fed into the plasma, and the 

maximum wakefield amplitude is 60 MV/m assuming 100r m  . The envelope response 

appears in the 1014 – 1015 cm-3 density range, while the slight beating visible at higher densities 

relate to the fact that the model of the beam was a square bunch with sharp cutoffs at the 

edges. In the case where the wire mask was blocking sections of the beam to create the 

bunches, the total charge is 150 pC and is assumed to be distributed over 5 bunches which have 

width equal to 125 μm (half the plasma wavelength). The bunches are separated by one plasma 

wavelength apart. It is observed that the wakefields are very low for most densities, expect for 

the resonant density at 1.8×1016 cm-3 (where the wakes of all 5 bunches add in-phase) where the 

 
Figure 6.11: Plasma wakefield amplitude response as a function of the plasma density for a bunched and 
non-bunched square beam. The bunches are separated by one plasma wavelength and their width is half 
a plasma wavelength. 
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wake is expected to peak at 140 MV/m. Weaker wakefield peaks also appear at the plasma 

frequency harmonics. It is important to notice that the resonance width is around 20%1, which is 

the accuracy with which the plasma density must be known in order to operate near it. 

 Since the bunches are also spaced apart in energy, each bunch samples a different 

phase of the wakefield and thus it will shift in energy. Those expected shifts in energy as a 

function of plasma density are simulated in Figure 6.12 using ThemOsiris after 10 mm of 

propagation in the plasma. The bunches are assumed equidistant in energy between 60 MeV 

and 61.5 MeV, separated by 0.25 MeV and their individual energy spread is 0.05 MeV. The first 

drive bunch has the higher energy, and is only experiences its own wake, thus the energy shift is 

relatively small. Later bunches experience their own wakefield plus the wakefield created from 

                                                             
1
 Inversely proportional to the number of bunches. 

 
Figure 6.12: Energy spectrum of 5×30 pC drive bunches separated by 250 μm in space and by 0.25 MeV in 
energy as a function of the plasma density after 10 mm of plasma propagation. In densities above and 
below resonance the bunches suffer small energy spread, while at the resonance of 1.8×1016 cm-3 the 
wakefield is maximum and the energy spread becomes large. The last drive bunches samples the highest 
wakefield. 
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all the previous bunches. At the resonant density of 1.8×1016 cm-3 the wakefield is maximum and 

this shows up as a strong spreading in energy, since the bunches are not much shorter than the 

plasma wavelength and sample half of its phase. In higher densities the bunches suffer small 

energy spreads. 

6.3.2 Experimental Data 

The experimentally recorded energy spectra of 7 bunches fed into a 6 mm plasma produced by a 

25 kV capillary discharge at 150 Torr gas pressure (see details on the plasma source in Chapter 

3) are shown in Figure 6.13 at a low density of 7×1013 cm-3, selected by delaying the arrival of 

the beam with respect to the discharge. On the left panel the effect of the plasma on the full 

300 pC – 400 pC  beam was recorded, showing energy loss gradient of 35 MV/m compared to 

the plasma off case (as deduced from the energy loss for the given plasma length). In this setup 

the beam length is between 0.5 mm – 1 mm and has a transverse spot size close to 100 μm.  

 
Figure 6.13: Recorded energy spectra of the bunched (right panel) and non-bunched (left panel) before 
and after a 6 mm long plasma at a low density. 
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When the mask is inserted the microbunches are now fed into the plasma (right panel), 

with a measured period (through CTR diagnostics) between 100 μm – 200 μm and width equal 

to half their period. The first drive bunch has the highest energy, around 59.4 MeV. The total 

charge now is reduced to roughly 100 pC – 200 pC, which results in a smaller average energy 

loss of 22  MV/m. This is still envelope interaction at the low density, as demonstrated by the 

increasingly larger energy loss of the later drive bunches. The simulated excited wakefield and 

energy spectra for the bunches is shown in Figure 6.14 and compared with the experimentally 

recorded energy shifts, demonstrating good agreement with the data. 

 Operation near the resonance is more challenging because the plasma density must be 

stable within ≈20% for the bunches shown here over the desired plasma length. Plasma 

 
Figure 6.14: Simulated wakefield and energy spectra for the experimental data of the beam plasma 
interaction of Figure 6.13. The top panel shows the 7 bunches with 200 pC total charge fed into a 
7×1013 cm-3 density 6 mm long plasma. The wakefield under each bunch deduced from the energy shifts is 
shown with red dots. The bottom panel shows the simulated energy spectra before and after the plasma. 
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instabilities larger than these values, or non-uniform longitudinally plasmas will result in 

decreased wakefield. As was shown in Chapter 3, for capillary discharges the density may vary 

by 3 – 4 orders of magnitude over a few microseconds, and the beam needs to be timed to 

arrive within this 20% window around the resonance. If the plasma density varies as 

   
max

a t T

pn t n e
 

 , and the enhanced wakefield is to be observed in a range of densities n  

around a resonant density 
0n , then the time scale t  over which the resonance will evolve is 

given by 
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  

 



  (72) 

For example, if there is a 
0/ 20%n n   wide resonance and the density drops exponentially 

with a coefficient 
12.9a s  , then 70t ns  . This is the time over which the density must be 

scanned in order for the resonance to be detected. Finally, instabilities in the incoming beam 

energy distribution may also affect the location of the resonance as the bunch period may drift 

during a run (see equation (71)). 

6.4 Chapter Conclusions 

The following items are concluded from this chapter: 

 Using the IFEL technique the 5.5 ps long ATF beam can be modulated into ≈100 

microbunches separated by 10.6 μm, which is predicted to resonantly excite a 1 GV/m 

wakefield when fed into a 1019 cm-3 density plasma. 
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 By recording the spectral energy under each harmonic of the CTR radiation when the 

beam traverses a metal foil the length of the individual microbunches was measured 

close to 0.7 0.1 m .  

 A method for generating microbunch trains of tunable separation is presented by 

placing a metal wire mask at a high energy dispersion plane along the beam path and 

selectively blocking parts of the beam. 3 – 7 bunches with 200 μm – 400 μm separation 

were measured using CTR. 

 Using the mask technique a 140 MV/m wakefield is predicted to be excited if the plasma 

density is matched to the bunch separation. This is 2 – 5 times stronger than any non-

resonant wake, with or without the mask. The mask pattern can also be adjusted to 

create bunches for a maximum transformer ratio scheme. 

 Wakefields around 20 MV/m where measured at low densities where the plasma 

responds to the envelope of the bunches, by observing the bunch energy shifts which 

increase with later bunches.  
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Write a wise saying and your name will live forever. 

 - Anonymous 

 

 

Chapter 7  

Conclusions 

7.1 Summary of the Results 

The main goal of this dissertation was to explore the use of multiple bunches as a tool for 

enhancing the performance of plasma wakefield accelerators. This was done through a unique 

combination of theory, simulations and experiments. In Chapter 1 we offered an overview of the 

role of particle accelerators in modern physics and we explained the need for new technologies 

based on harnessing the fields in waves driven in plasmas. In Chapter 2 the main aspects of 

plasma wakefield theory were rigorously laid out, and some aspects relevant to the transformer 

ratio and efficiency (both driving and beam-loading) of plasma accelerators were examined in 

more detail. 

 The need for plasma sources was addressed in Chapter 3. The main characteristics of 

capillary discharges were analyzed and a large volume of data was presented, based on many 

months of experimental work in ATF at BNL and in the Pulsed Power Lab at USC. We found that 

densities between 1014 cm-3 – 1019 cm-3 can be generated stably using capillary plasma sources, 

tunable through gas pressure, tube diameter, tube length and also by varying the time-delay of 
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the arrival of the electron beam during the discharge. The spectral diagnostic of Stark 

Broadening was found to be an excellent method for measuring the plasma density as long as 

the light spectra during the discharge are relatively clean such that the spectral lines can be 

identified. 

 In Chapter 4 we presented experimental evidence for the acceleration of a trailing 

witness electron bunch in the wakefields driven by a preceding bunch in a plasma. For the first 

time the accelerating gradient for such a scenario was above 100 MV/m while the bunch 

remains shorter than the plasma wavelength, thus being a promising technology for accelerating 

bunches to high energies while preserving the beam quality. It is most likely that any future 

plasma-based collider will require the acceleration of a trailing bunch in a similar fashion. 

 Chapter 5 laid the theoretical framework for creating high-transformer-ratio wakefields 

in a plasma accelerator through the use of multiple drive electron bunches. We find that it is 

possible to multiply the energy of an incoming electron beam when the position of the bunches 

and the charge per bunch are adjusted properly, as long as the beam can be maintained stable 

over long plasma lengths. The second half of this chapter demonstrates through simulations 

that indeed a witness beam can propagate over meter-scale plasmas if its emmitance of each 

bunch is properly matched to the increasing focusing force that each subsequent bunch 

experiences. Other than those elements the bunches need not be specially shaped, which 

implies that these ideas could be tested straightforwardly experimentally. 

 Finally, in Chapter 6 we presented some recent experimental results and diagnostics 

related to multibunch experiments. Two different techniques for generating multiple bunches 

were examined, either through IFEL bunching or by using the mask technique to selectively 

block portions of the incoming beam. Although some charge is inadvertently lost with this 
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method, it is found to offer great design flexibility, such as the easy creation of a witness 

electron bunch. Preliminary experimental results of the interaction of multiple bunches with 

plasmas are also presented in this chapter.  

7.2 Future Work 

After the exciting possibilities that multiple bunches open up for plasma accelerators, a variety 

of approaches require experimental testing. The most immediate one would be the acceleration 

of a trailing witness bunch using SLAC-scale gradients (GV/m) to very high energies. This would 

be a direct extension of both the energy doubling experiment [20] (which had a single bunch 

and high energy spread) and the trailing bunch acceleration experiment presented here in 

Chapter 4 (where the gradient was large but the energy gain was limited by the plasma length). 

Furthermore, such experiments need to also be conducted for positrons, the equally important 

other half of a possible PWFA-based future collider. 

 In addition, there is a lot of room for improvement in the demonstration of resonant 

plasma wakefields using multiple drive bunches. The wakefields need to be measured 

thoroughly as a function of the plasma density and the number of bunches in the drive beam. 

Subsequently, it is extremely important to demonstrate experimentally that multiple drive 

bunches can provide wakes with high transformer ratio. So far, only a small enhancement of 

30% has been verified in dielectric accelerators [79]. Using the mask technique presented here, 

the required bunches can be designed. Using the plasma source suggestions also presented 

here, the required plasma source could also be built. ATF could provide the first proof-of-

principle results at low energies, but eventually these schemes need to be tested in GeV-scale 

machines. 
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 Simulations can also help greatly in examining the possibility of using multiple drive 

bunches over very long plasmas. There is still the question whether plasma instabilities, such as 

the electron hosing instability, will hinder the acceleration of witness beams. The electron 

hosing instability arises when the beam accelerates in pure ion channels in the blowout regime 

of PWFA, triggered by small transverse motions of the tail of the beam. This may not be an issue 

if the accelerator operates in the linear regime (as examined in this work) since there is no ion 

channel, yet this needs to be verified. 

 The work here can be extended in more detail in the nonlinear regime. Although using 

unshaped bunches does not seem to work directly in the nonlinear regime, simulations can 

indicate whether properly shaped bunches (such as a step function followed by a linear ramp) 

can lead to transformer ratio enhancements in the blowout regime as well. Such bunches, 

although more technically challenging to create, would take advantage of the nice focusing 

properties of the blowout regime and from the higher acceleration gradients (thus reducing the 

required plasma length, if also the high transformer ratio can be maintained). 

 Once high beam loading efficiency and high transformer ratio beams are generated, it 

will be important to generate them at high quality, starting with low energy spread. Currently 

this seems to be feasible by shaping the witness bunch in a reverse-ramped fashion that causes 

a constant wakefield under the bunch, thus reducing the energy spread. Another idea that has 

not been explored yet is to achieve that using the technique that is popular with conventional 

accelerators, which is to accelerate the beam on different slopes of the wakefields. By tuning 

the phase the beam can sample either a negative slope or a positive slope of the accelerating 

wave, thus on average compensating for the field variation across the beam. A similar effect 

could also be achieved in a plasma wakefield accelerator by tuning the phase of the witness 
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bunch. For example, one could implement a transverse magnetic field so that the beam acquires 

a transverse velocity that results in its dephasing with respect to the wake – this was suggested 

initially in [91] to actually avoid dephasing. Alternatively, plasma sections with different plasma 

densities could be placed in an alternating fashion such that the plasma wavelength is different 

between sections and thus the beam could sample in a similarly alternating fashion two 

different crests of the plasma wake, averaging out the wakefield variation. 

7.3 Epilogue 

We have come a long way since the ancient Greek philosopher Thales of Miletus wrote that by 

rubbing animal fur onto amber1 a particular attraction was observed, thus providing the very 

first understanding of the electromagnetic forces. Had he been around Geneva today to see the 

underground tunnel of the Large Hadron Collider, without a doubt he would have been awed by 

the intricate ways that we have devised to manipulate these forces in order to probe the 

fundamental mysteries of Nature. Though the means may have changed, the spirit for discovery 

has remained unaltered through the ages; it has also inspired the writing of this dissertation in 

an attempt to allow plasma accelerators to aid the future of particle acceleration. 

 This dissertation will end in the same way it started, with a quote from Richard 

Feynman, this time taken from his “Lectures in Physics” to the Caltech undergraduate students 

in 1962. It is probably the shortest piece of text that I have ever seen to summarize all of the 

intricate interconnections of science so beautifully. 

“A poet once said: the whole universe is in a glass of wine. We will probably never know 

in what sense he said that, for poets do not write to be understood. But it is true that if we look 

in glass of wine closely enough we see the entire universe. There are the things of physics: the 

                                                             
1
 Amber is “ήλεκτρον” in Greek, hence the name of the electron. 
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twisting liquid which evaporates depending on the wind and weather, the reflections in the 

glass, and our imagination adds the atoms. The glass is a distillation of the earth's rocks, and in 

its composition we see the secrets of the universe's age, and the evolution of the stars. What 

strange arrays of chemicals are in the wine? How did they come to be? There are the ferments, 

the enzymes, the substrates, and the products. There in wine is found the great generalization: 

all life is fermentation. Nobody can discover the chemistry of wine without discovering the 

cause of much disease. How vivid is the claret, pressing its existence into the consciousness that 

watches it! And if in our small minds, for some convenience, divide this glass of wine, this 

universe, into parts - physics, biology, geology, astronomy, psychology, and so on - remember 

that nature does not know it! So let us put it all back together, not forgetting ultimately what it 

is for. Let us give one more final pleasure: drink it and forget it all!” 

  



 
130 

 

Bibliography 

[1] Large Hadron Collider <http://en.wikipedia.org/wiki/Large_Hadron_Collider> 
 
[2] Stark Effect <http://en.wikipedia.org/wiki/Stark_Effect> 
 
[3] "ILC draft reference design report",(2007). 
 
[4] Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions with Formulas, 

Graphs, and Mathematical Tables (Dover, 1964). 
 
[5] Akhiezer, A. I. and R. V. Polovin, "Theory of wave motion of an electron plasma", Soviet 

Physics JETP 3, no.5, 696 (1956). 
 
[6] Alexiou, S., "Stark broadening of hydrogen lines in dense plasmas: Analysis of recent 

experiments", Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 71, no.6 
(2005). 

 
[7] Ashkenazy, J., R. Kipper and M. Caner, "Spectroscopic measurements of electron density 

of capillary plasma based on Stark broadening of hydrogen lines", Physical Review A 43, 
no.10, 5568 (1991). 

 
[8] Aubert, J. J. et al., "Experimental Observation of a Heavy Particle J", Physical Review 

Letters 33, no.23, 1404 (1974). 
 
[9] Bane, K. L. F., P. Chen and P. B. Wilson, "On Collinear wakefield acceleration", IEEE 

Transactions on Nuclear Science 32, no.5, 3524 (1985). 
 
[10] Bane, K. L. F. and P. B. Wilson, "Wakefields and Wakefield Acceleration",SLAC-PUB-3528 

(1984). 
 
[11] Barnett, R. M. et al., "Review of Particle Physics", Physical Review D 54, no.1, 1 (1996). 
 
[12] Barov, N. et al., "Ultra high-gradient energy loss by a pulsed electron beam in a plasma", 

in Proceedings of the Particle Accelerator Conference  (IEEE, 2001), pp. 126. 
 
[13] Barov, N. and J. B. Rosenzweig, "Propagation of short electron pulses in underdense 

plasmas", Physical Review E 49, no.5, 4407 (1994). 
 
[14] Barov, N. et al., "Observation of plasma wakefield acceleration in the underdense 

regime", Phys. Rev. ST Accel. Beams 3, 011301 (2000). 
 

http://en.wikipedia.org/wiki/Large_Hadron_Collider
http://en.wikipedia.org/wiki/Stark_Effect


 
131 

 

[15] Barov, N. et al., "Energy loss of a high-charge bunched electron beam in plasma: 
Analysis", Phys. Rev. ST Accel. Beams 7, no.6 (2004). 

 
[16] Bekefi, G., Principles of Laser Plasmas (John Wiley and Sons, 1976). 
 
[17] Berezin, A. K. et al., "Wakefield excitation in plasma by a relativistic electron pulse with a 

controlled number of short bunches", Plasma Physics Reports 20, no.7, 596 (1994). 
 
[18] Bingham, R., "Plasma physics: On the crest of a wake", Nature 445, no.7129, 721 (2007). 
 
[19] Blue, B. E. et al., "Plasma-Wakefield Acceleration of an Intense Positron Beam", Physical 

Review Letters 90, no.21, 214801 (2003). 
 
[20] Blumenfeld, I. et al., "Energy doubling of 42 GeV electrons in a metre-scale plasma 

wakefield accelerator", Nature 445, no.7129, 741 (2007). 
 
[21] Bobrova, N. A. et al., "Simulations of a hydrogen-filled capillary discharge waveguide", 

Physical Review E 65, no.1, 016407 (2001). 
 
[22] Boddeker, S. et al., "Shift and width of the Ha line of hydrogen in dense plasmas", 

Physical Review E 47, no.4, 2785 (1993). 
 
[23] Braun, H. H. et al., "Frequency and Temperature Dependence of Electrical Breakdown at 

21, 30, and 39 GHz", Physical Review Letters 90, no.22, 224801 (2003). 
 
[24] Broks, B. H. P., K. Garloff and J. van der Mullen, "Nonlocal-thermal-equilibrium model of 

a pulsed capillary discharge waveguide", Physical Review E (Statistical, Nonlinear, and 
Soft Matter Physics) 71, no.1 (2005). 

 
[25] Broks, B. H. P. et al., "Modeling of a square pulsed capillary discharge waveguide for 

interferometry measurements", Physics of Plasmas 14, no.2, 023501 (2007). 
 
[26] Buscher, S. et al., "The Stark width and shift of the hydrogen Ha line", Journal of Physics 

B: Atomic, Molecular and Optical Physics 35, no.13, 2889 (2002). 
 
[27] Campbell, L. P. et al., "Inverse Cerenkov acceleration and inverse free-electron laser 

experimental results for staged electron laser acceleration", IEEE Transactions on Plasma 
Science 28, no.4, 1143 (2000). 

 
[28] Catravas, P. et al., "Measurement of Electron-Beam Bunch Length and Emittance Using 

Shot-Noise-Driven Fluctuations in Incoherent Radiation", Physical Review Letters 82, 
no.26, 5261 (1999). 

 
[29] Chen, H. et al., "High Density Plasma in a High Pressure Hydrogen Capillary Discharge", 

in Pulsed Power Plasma Science Conference  (IEEE, 2007), pp. 288. 
 



 
132 

 

[30] Chen, P., "A possible final focusing mechanism for linear colliders", Particle Accelerators 
20, 171 (1987). 

 
[31] Chen, P. et al., "Acceleration of Electrons by the Interaction of a Bunched Electron Beam 

with a Plasma", Physical Review Letters 54, no.7, 693 (1985). 
 
[32] Chen, P. et al., "Energy Transfer in the Plasma Wake-Field Accelerator", Physical Review 

Letters 56, no.12, 1252 (1986). 
 
[33] Chen, P. et al., "Plasma Focusing for High-Energy Beams", IEEE Transactions on Plasma 

Science 15, no.2, 218 (1987). 
 
[34] Chiou, T. C. and T. Katsouleas, "High Beam Quality and Efficiency in Plasma-Based 

Accelerators", Physical Review Letters 81, no.16, 3411 (1998). 
 
[35] Clayton, C. E. et al., "Transverse Envelope Dynamics of a 28.5-GeV Electron Beam in a 

Long Plasma", Physical Review Letters 88, no.15, 154801 (2002). 
 
[36] Clayton, C. E. et al., "Relativistic Plasma-Wave Excitation by Collinear Optical Mixing", 

Physical Review Letters 54, no.21, 2343 (1985). 
 
[37] Clayton, C. E. et al., "Ultrahigh-gradient acceleration of injected electrons by laser-

excited relativistic electron plasma waves", Physical Review Letters 70, no.1, 37 (1993). 
 
[38] Coisson, R., "Energy-loss calculation of gain in a plane sinusoidal free-electron laser", 

IEEE Journal of Quantum Electronics 17, no.8, 1409 (1981). 
 
[39] Collaboration, C. D. F. et al., "Observation of Top Quark Production in p-p Collisions with 

the Collider Detector at Fermilab", Physical Review Letters 74, no.14, 2626 (1995). 
 
[40] Crooks, W., Radiant Matter (Twenty First Century Books, 1879). 
 
[41] Dawson, J., "Nonlinear Electron Oscillations in a Cold Plasma", Physical Review 113, 

no.2, 383 (1959). 
 
[42] Dawson, J., "Personal recollections on the development of Plasma Accelerators and light 

sources", in The ninth workshop on advanced accelerator concepts, edited by P. 
Colestock and S. Kelley  (AIP, 2001), pp. 3. 

 
[43] Dawson, J. M., "Plasma Particle Accelerators", Scientific American 260, no.3, 54 (1987). 
 
[44] Deng, S. et al., "Hose Instability and Wake Generation by an Intense Electron Beam in a 

Self-Ionized Gas", Physical Review Letters 96, no.4, 045001 (2006). 
 
[45] Deng, S. et al., "Plasma wakefield acceleration in self-ionized gas or plasmas", Physical 

Review E 68, no.4, 047401 (2003). 



 
133 

 

 
[46] Eddington, A., "The Physical Society of London Report on the Relativity Theory of 

Gravitation", Nature 103, no.2575, 2 (1919). 
 
[47] Edison, N. et al., "Characterization of a capillary-discharge plasma", Physical Review E 

47, no.2, 1305 (1993). 
 
[48] Einstein, A., "Die Feldgleichungen der Gravitation", Sitzungsberichte der Preussischen 

Akademie der Wissenschaften zu Berlin, 844 (1915). 
 
[49] England, R. J. et al., "Sextupole correction of the longitudinal transport of relativistic 

beams in dispersionless translating sections", Phys. Rev. ST Accel. Beams 8, no.1 (2005). 
 
[50] Esarey, E., C. B. Schroeder and W. P. Leemans, "Laser-driven plasma-based 

accelerators",LBNL Technical Report, LBNL-53510 (2006). 
 
[51] Esarey, E. et al., "Overview of plasma-based accelerator concepts", IEEE Transactions on 

Plasma Science 24, no.2, 252 (1996). 
 
[52] Esarey, E. et al., "Optically guided laser wake-field acceleration", Physics of Fluids B: 

Plasma Physics 5, no.7, 2690 (1993). 
 
[53] Escarguel, A. et al., "A single laser spark in aqueous medium", Journal of Quantitative 

Spectroscopy and Radiative Transfer 64, no.4, 353 (2000). 
 
[54] Escarguel, A. et al., "Highly nonlinear, sign-varying shift of hydrogen spectral lines in 

dense plasmas", Physical Review E 62, no.2, 2667 (2000). 
 
[55] Everett, M. et al., "Trapped electron acceleration by a laser-driven relativistic plasma 

wave", Nature 368, no.6471, 527 (1994). 
 
[56] Fainberg, Y., "The use of plasma waveguides as accelerating structures in linear 

accelerators", in CERN Symposium on High Energy Accelerators  (CERN, 1956), p. 84. 
 
[57] Fainberg, Y. et al., "Wakefield excitation in plasma by a train of relativistic electron 

bunches", Plasma Physics Reports 20, no.7, 606 (1994). 
 
[58] Faure, J. et al., "A laser-plasma accelerator producing monoenergetic electron beams", 

Nature 431, no.7008, 541 (2004). 
 
[59] Faure, J. et al., "Controlled injection and acceleration of electrons in plasma wakefields 

by colliding laser pulses", Nature 444, no.7120, 737. 
 
[60] Feynman, R., The character of physical law (Random House, Inc., 1994). 
 



 
134 

 

[61] Flih, S. A., E. Oks and Y. Vitel, "Comparison of the Stark widths and shifts of the H-alpha 
line measured in a flash tube plasma with theoretical results", Journal of Physics B: 
Atomic, Molecular and Optical Physics 36, no.2, 283 (2003). 

 
[62] Flih, S. A. and Y. Vitel, "Experimental profiles of hydrogen balmer alpha line emitted in 

weakly non-ideal plasmas", in Spectral Line Shapes: Volume 11, 15th ICSLS, edited by J. 
Seidel  (AIP, 2001), pp. 30. 

 
[63] Geddes, C. G. R. et al., "High-quality electron beams from a laser wakefield accelerator 

using plasma-channel guiding", Nature 431, no.7008, 538 (2004). 
 
[64] Gigosos, M., M. Gonzalez and V. Cardenoso, "Computer simulated Balmer-alpha, -beta 

and -gamma Stark line profiles for non-equilibrium plasmas diagnostics", 5th European 
Furnace Symposium and 10th International Solid Sampling Colloquium with Atomic 
Spectroscopy 58, no.8, 1489 (2003). 

 
[65] Gonsalves, A. J. et al., "Transverse Interferometry of a Hydrogen-Filled Capillary 

Discharge Waveguide", Physical Review Letters 98, no.2, 025002 (2007). 
 
[66] Griem, H., Plasma Spectroscopy (McGraw-Hill, 1964). 
 
[67] Griem, H., Spectral Line Broadening by Plasmas (Academic, 1974). 
 
[68] Griem, H., "Shifts of hydrogen and ionized-helium lines from Delta n=0 interactions with 

electrons in dense plasmas", Physical Review A 38, no.6, 2943 (1988). 
 
[69] Griem, H. R., "Stark Broadening of the Hydrogen Balmer-alpha Line in Low and High 

Density Plasmas", Contributions to Plasma Physics 40, no.1-2, 46 (2000). 
 
[70] Griem, R., H. Jacek and O. Wieslaw, "Comparison of hydrogen Balmer-alpha Stark 

profiles measured at high electron densities with theoretical results", Journal of Physics 
B: Atomic, Molecular and Optical Physics 38, no.7, 975 (2005). 

 
[71] Hemker, R. G. et al., "Development of a parallel code for modeling plasma based 

accelerators", in Proceedings of the Particle Accelerator Conference  (IEEE, 1999), pp. 
3672. 

 
[72] Hofmann, I. and J. Struckmeier, "Generalized three-dimensional equations for the 

emittance and field energy of high-current beams in periodic focusing structures", 
Particle Accelerators 21, 69 (1987). 

 
[73] Hogan, M. J. et al., "E-157: A 1.4-m-long plasma wake field acceleration experiment 

using a 30 GeV electron beam from the Stanford Linear Accelerator Center Linac", 
Physics of Plasmas 7, 2241 (2000). 

 



 
135 

 

[74] Hogan, M. J. et al., "Multi-GeV Energy Gain in a Plasma-Wakefield Accelerator", Physical 
Review Letters 95, no.5 (2005). 

 
[75] Hogan, M. J. et al., "Ultrarelativistic-Positron-Beam Transport through Meter-Scale 

Plasmas", Physical Review Letters 90, no.20, 205002 (2003). 
 
[76] Hutchinson, I. H., Principles of Plasma Diagnostics (Cambridge University Press, 1987). 
 
[77] Jackson, J., Classical Electrodynamics (Wiley, 1998). 
 
[78] Jing, C. et al., "Observation of Enhanced Transformer Ratio in Collinear Wakefield 

Acceleration", in 12th Advanced Accelerator Concepts Workshop, edited by M. Conde 
and C. Eyberger  (AIP, 2006), pp. 511. 

 
[79] Jing, C. et al., "Observation of Enhanced Transformer Ratio in Collinear Wakefield 

Acceleration", Physical Review Letters 98, no.14, 144801 (2007). 
 
[80] Jones, W. M., M. C. Healy and G. L. McCulloch, "Ratio of Balmer line to spectrally 

adjacent emission, from the afterglow of a Z-pinch discharge in hydrogen", Plasma 
Physics and Controlled Fusion 29, no.8, 1045 (1987). 

 
[81] Joshi, C. et al., "High energy density plasma science with an ultrarelativistic electron 

beam", in Review,Tutorial and Invited Papers from the 43rd Annual Meeting of the APS 
Division of Plasma Physics  (AIP, 2002), pp. 1845. 

 
[82] Joshi, C. et al., "Ultrahigh gradient particle acceleration by intense laser-driven plasma 

density waves", Nature 311, no.5986, 525 (1984). 
 
[83] Kaganovich, D. et al., "Investigations of double capillary discharge scheme for production 

of wave guide in plasma", Applied Physics Letters 71, no.20, 2925 (1997). 
 
[84] Kaganovich, D. et al., "High efficiency guiding of terawatt subpicosecond laser pulses in a 

capillary discharge plasma channel", Physical Review E 59, no.5, R4769 (1999). 
 
[85] Kallos, E. et al., "High-Gradient Plasma-Wakefield Acceleration with Two Subpicosecond 

Electron Bunches", Physical Review Letters 100, no.7, 074802 (2008). 
 
[86] Kallos, E. et al., "A Multibunch Plasma Wakefield Accelerator", in Proceedings of the 

Particle Accelerator Conference  (IEEE, 2005), pp. 3384. 
 
[87] Kallos, E. et al., "Plasma wakefield acceleration utilizing multiple election bunches", in 

Proceedings of the Particle Accelerator Conference  (IEEE, 2007), pp. 3070. 
 
[88] Kallos, E. et al., "Resonant Plasma Wakefield Experiment: Plasma Simulations and 

Multibunched Electron Beam Diagnostics", in 12th Advanced Accelerator Concepts 
Workshop, edited by M. Conde and C. Eyberger  (AIP, 2006), pp. 520. 



 
136 

 

 
[89] Katsouleas, T., "Physical mechanisms in the plasma wake-field accelerator", Physical 

Review A 33, no.3, 2056 (1986). 
 
[90] Katsouleas, T., "Plasma physics: On the node of a wave", Nature 444, no.7120, 688 

(2006). 
 
[91] Katsouleas, T. and J. M. Dawson, "Unlimited Electron Acceleration in Laser-Driven 

Plasma Waves", Physical Review Letters 51, no.5, 392 (1983). 
 
[92] Katsouleas, T. et al., "Beam loading in plasma accelerators", Particle Accelerators 22, 81 

(1987). 
 
[93] Keinigs, R. and M. Jones, "Two-dimensional dynamics of the plasma wakefield 

accelerator", Physics of Fluids 30, no.1, 252 (1987). 
 
[94] Kepple, P. and H. Griem, "Improved Stark Profile Calculations for the Hydrogen Lines H 

alpha , H beta , H gamma , and H delta", Physical Review 173, no.1, 317 (1968). 
 
[95] Kim, S.-H. et al., "Capillary discharge in the open air", IEEE Transactions on Magnetics 39, 

no.1, 244 (2003). 
 
[96] Kimura, W. D. et al., "Detailed experimental results for laser acceleration staging", Phys. 

Rev. ST Accel. Beams 4, no.10 (2001). 
 
[97] Kimura, W. D. et al., "First Staging of Two Laser Accelerators", Physical Review Letters 

86, no.18, 4041 (2001). 
 
[98] Kimura, W. D. et al., "Subpicosecond Double Electron Bunch Generation", in 12th 

Advanced Accelerator Concepts Workshop, edited by M. Conde and C. Eyberger  (AIP, 
2006), pp. 527. 

 
[99] Kitagawa, Y. et al., "Beat-wave excitation of plasma wave and observation of accelerated 

electrons", Physical Review Letters 68, no.1, 48 (1992). 
 
[100] Kozawa, T. et al., "Plasma wakefield acceleration experiments in overdense regime 

driven by narrow bunches", in Proceedings of the Particle Accelerator Conference  (IEEE, 
1995), pp. 779. 

 
[101] Kroll, N., P. Morton and M. Rosenbluth, "Free-electron lasers with variable parameter 

wigglers", IEEE Journal of Quantum Electronics 17, no.8, 1436 (1981). 
 
[102] Langmuir, I., "Oscillations in Ionized Gases", Proceedings of the National Academy of 

Science 14, 627 (1928). 
 



 
137 

 

[103] Lawrence, E. and S. Livingston, "The Production of High Speed Light Ions Without the Use 
of High Voltages", Physical Review 40, no.1, 19 (1932). 

 
[104] Laziev, E., V. Tsakanov and S. Vahanyan, "Electromagnetic wave generation with high 

transformation ratio by intense charged particle bunches", in EPAC  (IEEE, 1988), pp. 
523. 

 
[105] Lee, S. et al., "Energy doubler for a linear collider", Phys. Rev. ST Accel. Beams 5, no.1 

(2002). 
 
[106] Leemans, W. P. et al., "GeV electron beams from a centimetre-scale accelerator", Nat 

Phys 2, no.10, 696 (2006). 
 
[107] Leemans, W. P. et al., "Plasma guiding and wakefield generation for second-generation 

experiments", IEEE Transactions on Plasma Science 24, no.2, 331 (1996). 
 
[108] Levin, M. et al., "Longitudinal profiles of plasma parameters in a laser-ignited capillary 

discharge and implications for laser wakefield accelerator applications", Applied Physics 
Letters 87, no.26, 261501 (2005). 

 
[109] Li, B. and D. Kwok, "Multi-dimensional transient process for a pulse ablating capillary 

discharge: modeling and experiment", Journal of Plasma Physics 70, no.4, 379 (2004). 
 
[110] Lihn, H.-C., "Stimulated Coherent Transition Radiation", Ph.D. Thesis, Stanford University 

(1996). 
 
[111] Liu, Y. et al., "Experimental Observation of Femtosecond Electron Beam Microbunching 

by Inverse Free-Electron-Laser Acceleration", Physical Review Letters 80, no.20, 4418 
(1998). 

 
[112] Lotov, K. V., "Blowout regimes of plasma wakefield acceleration", Physical Review E 

(Statistical, Nonlinear, and Soft Matter Physics) 69, no.4 (2004). 
 
[113] Lu, W., "Nonlinear Plasma Wakefield Theory and Optimum Scaling for Laser Wakefield 

Acceleration in the Blowout Regime", Ph.D. Thesis, (2006). 
 
[114] Lu, W. et al., "Nonlinear Theory for Relativistic Plasma Wakefields in the Blowout 

Regime", Physical Review Letters 96, no.16 (2006). 
 
[115] Lu, W. et al., "A nonlinear theory for multidimensional relativistic plasma wave 

wakefields", Physics of Plasmas 13, no.5 (2006). 
 
[116] Lu, W. et al., "Limits of linear plasma wakefield theory for electron or positron beams", 

Physics of Plasmas 12, no.6, 063101 (2005). 
 



 
138 

 

[117] Lu, W. et al., "Generating multi-GeV electron bunches using single stage laser wakefield 
acceleration in a 3D nonlinear regime", Phys. Rev. ST Accel. Beams 10, no.6 (2007). 

 
[118] Maeda, R. et al., "Possibility of a multibunch plasma afterburner for linear colliders", 

Physical Review Special Topics-Accelerators and Beams 7, no.11 (2004). 
 
[119] Malka, V. et al., "Electron Acceleration by a Wake Field Forced by an Intense Ultrashort 

Laser Pulse", Science 298, no.5598, 1596 (2002). 
 
[120] Mangles, S. P. D. et al., "Monoenergetic beams of relativistic electrons from intense 

laser-plasma interactions", Nature 431, no.7008, 535 (2004). 
 
[121] Maxwell, J., "A Dynamical Theory of the Electromagnetic Field", Philosophical 

Transactions of the Royal Society of London 155, 459 (1865). 
 
[122] Modena, A. et al., "Electron acceleration from the breaking of relativistic plasma waves", 

Nature 377, no.6550, 606 (1995). 
 
[123] Muggli, P. et al., "Meter-Scale Plasma-Wakefield Accelerator Driven by a Matched 

Electron Beam", Physical Review Letters 93, no.1 (2004). 
 
[124] Muggli, P. et al., "Generation and characterization of microbunched beams with a wire 

mesh mask", in Proceedings of the Particle Accelerator Conference  (IEEE, 2007), pp. 
3079. 

 
[125] Murokh, A. et al., "Bunch length measurement of picosecond electron beams from a 

photoinjector using coherent transition radiation", Nuclear Instruments and Methods in 
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated 
Equipment 410, no.3, 452 (1998). 

 
[126] Nakajima, K. et al., "Plasma wake-field accelerator experiments at KEK", Nuclear 

Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, 
Detectors and Associated Equipment 292, no.1, 12 (1990). 

 
[127] Nakamura, K. et al., "GeV electron beams from a centimeter-scale channel guided laser 

wakefield accelerator", Physics of Plasmas 14, no.5, 056708 (2007). 
 
[128] Nakanishi, H. et al., "Wakefield accelerator using twin linacs", Nuclear Instruments and 

Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and 
Associated Equipment 328, no.3, 596 (1993). 

 
[129] Nakanishi, H. et al., "Direct observation of plasma-lens effect", Physical Review Letters 

66, no.14, 1870 (1991). 
 
[130] Newton, I., The Principia: Mathematical Principles of Natural Philosophy (University of 

California Press, 1999). 



 
139 

 

 
[131] O'Connell, "Plasma production via field ionization", Phys. Rev. ST Accel. Beams 9, 101301 

(2006). 
 
[132] Ogata, A., "Plasma Lens and Wake Experiments in Japan", in 5th Advanced Accelerator 

Concepts Workshop  (AIP, 1993), pp. 420. 
 
[133] Ogata, A. et al., "Plasma wakefield accelerator experiments in KEK", in Proceedings of 

the Particle Accelerator Conference  (IEEE, 1989), pp. 618. 
 
[134] Ogata, A. et al., "Plasma lens and plasma Wakefield acceleration experiments using twin 

linacs", in Proceedings of the Particle Accelerator Conference  (IEEE, 1993), pp. 3552. 
 
[135] Ogata, A. et al., "Direct observation of plasma wakefield caused by a train of LINAC 

bunches", in Proceedings of the Particle Accelerator Conference  (IEEE, 1991), pp. 622. 
 
[136] Oz, E. et al., "Ionization-Induced Electron Trapping in Ultrarelativistic Plasma Wakes", 

Physical Review Letters 98, no.8 (2007). 
 
[137] Palmer, R., "Interaction of Relativistic Particles and Free Electromagnetic Waves in the 

Presence of a Static Helical Magnet", Journal of Applied Physics 43, no.7, 3014 (1972). 
 
[138] Panofsky, W. K. H. and M. Breidenbach, "Accelerators and detectors", Reviews of 

Modern Physics 71, no.2, S121 (1999). 
 
[139] Panofsky, W. K. H. and W. Wenzel, "Transverse deflection of charged particles in 

radiofrequency fields", Review of Scientific Instruments 27, 967 (1956). 
 
[140] Parigger, C., J. W. L. Lewis and D. Plemmons, "Electron number density and temperature 

measurement in a laser-induced hydrogen plasma", Journal of Quantitative 
Spectroscopy and Radiative Transfer 53, no.3, 249 (1995). 

 
[141] Parigger, C., D. Plemmons and E. Oks, "Balmer Series H$\beta$ Measurements in a 

Laser-Induced Hydrogen Plasma", Appl. Opt. 42, no.30, 5992 (2003). 
 
[142] Planck, M., "On the Law of Distribution of Energy in the Normal Spectrum", Annalen der 

Physik 4, 553 (1901). 
 
[143] Powell, J. D. and A. E. Zielinski, "Capillary discharge in the electrothermal gun", IEEE 

Transactions on Magnetics 29, no.1, 591 (1993). 
 
[144] Power, J. G., W. Gai and A. Kanareykin, "Transformer ratio enhancement using a ramped 

bunch train in a collinear wakefield accelerator", in The ninth workshop on advanced 
accelerator concepts, edited by P. Colestock and S. Kelley  (AIP, 2001), pp. 605. 

 



 
140 

 

[145] Pukhov, A. and J. Meyer-Ter-Vehn, "Laser wake field acceleration: the highly non-linear 
broken-wave regime", Applied Physics B: Lasers and Optics 74, no.4, 355 (2002). 

 
[146] Rosenzweig, J. B., "Nonlinear plasma dynamics in the plasma wake-field accelerator", 

Physical Review Letters 58, no.6, 555 (1987). 
 
[147] Rosenzweig, J. B. et al., "Acceleration and focusing of electrons in two-dimensional 

nonlinear plasma wake fields", Physical Review A 44, no.10, R6189 (1991). 
 
[148] Rosenzweig, J. B. et al., "Experimental Observation of Plasma Wake-Field Acceleration", 

Physical Review Letters 61, no.1, 98 (1988). 
 
[149] Rosenzweig, J. B. et al., "Experimental measurement of nonlinear plasma wake fields", 

Physical Review A 39, no.3, 1586 (1989). 
 
[150] Rowlands-Rees, T. P. et al., "Laser-Driven Acceleration of Electrons in a Partially Ionized 

Plasma Channel", Physical Review Letters 100, no.10, 105005 (2008). 
 
[151] Rubens, H. and F. Kurlbaum, "Untitled", Proceedings of the Imperial Academy of 

Science, 929 (1900). 
 
[152] Ruth, R. D. et al., "A plasma wakefield accelerator", Particle Accelerators 17, 171 (1985). 
 
[153] Ruth, R. D. and P. Chen, "Plasma Accelerators",SLAC-PUB 3906 (1985). 
 
[154] Schutt, P., T. Weiland and V. M. Tsakanov, "On the wakefield acceleration using a 

sequence of driving bunches",DESY-M-88-13 (1988). 
 
[155] Serafini, L., "Micro-bunch production with radio frequency photoinjectors", IEEE 

Transactions on Plasma Science 24, no.2, 421 (1996). 
 
[156] Sheffield, J., Plasma Scattering of Electromagnetic Radiation (Academic Press, 1975). 
 
[157] Shibata, Y. et al., "Observation of coherent transition radiation at millimeter and 

submillimeter wavelengths", Physical Review A 45, no.12, R8340 (1992). 
 
[158] Spence, D. J., P. Burnett and S. M. Hooker, "Measurement of the electron-density profile 

in a discharge-ablated capillary waveguide", Optics Letters 24, no.14, 993 (1999). 
 
[159] Spence, D. J. and S. M. Hooker, "Investigation of a hydrogen plasma waveguide", 

Physical Review E 63, no.1, 015401 (2000). 
 
[160] Stambulchik, E. et al., "Stark broadening of high principal quantum number hydrogen 

Balmer lines in low-density laboratory plasmas", Physical Review E (Statistical, 
Nonlinear, and Soft Matter Physics) 75, no.1 (2007). 

 



 
141 

 

[161] Steffen, K. G., High energy beam optics (John Wiley, 1965). 
 
[162] Steinhauer, L. C. and W. D. Kimura, "Longitudinal space charge debunching and 

compensation in high-frequency accelerators", Phys. Rev. ST Accel. Beams 2, no.8 
(1999). 

 
[163] Steinhauer, L. C. et al., "Analysis of Laser Wakefield Acceleration Using ATF CO2 Laser", 

in Advanced Accelerator Concepts: Tenth Workshop  (AIP, 2002), pp. 751. 
 
[164] Stolyarov, D. et al., "Plasma Density Measurements in Hydrogen-Filled and Ablative 

Discharge Capillaries Based on Stark Broadening of Atomic Hydrogen Spectral Lines", in 
12th Advanced Accelerator Concepts Workshop, edited by M. Conde and C. Eyberger  
(AIP, 2006), pp. 784. 

 
[165] Stupakov, G. and P. Emma, "CSR wake for a short magnet in ultrarelativistic limit", in 

EPAC  (IEEE, 2002), pp. 1479. 
 
[166] Su, J. J. et al., "Stability of the Driving Bunch in the Plasma Wakefield Accelerator", IEEE 

Transactions on Plasma Science 15, no.2, 192 (1987). 
 
[167] Su, J. J. et al., "Plasma lenses for focusing particle beams", Physical Review A 41, no.6, 

3321 (1990). 
 
[168] Tajima, T. and J. M. Dawson, "Laser Electron Accelerator", Physical Review Letters 43, 

no.4, 267 (1979). 
 
[169] Tonks, L. and I. Langmuir, "Oscillations in Ionized Gases", Physical Review 33, no.2, 195 

(1929). 
 
[170] Tsung, F. S. et al., "Near-GeV-Energy Laser-Wakefield Acceleration of Self-Injected 

Electrons in a Centimeter-Scale Plasma Channel", Physical Review Letters 93, no.18, 
185002 (2004). 

 
[171] Vidal, C. R. and J. Cooper, "Heat-Pipe Oven: A New, Well-Defined Metal Vapor Device for 

Spectroscopic Measurements", Journal of Applied Physics 40, no.8, 3370 (1969). 
 
[172] Vitel, Y. et al., "Spectra of dense pure hydrogen plasma in Balmer area", Journal of 

Quantitative Spectroscopy and Radiative Transfer 83, no.3-4, 387 (2004). 
 
[173] Wiese, W. L., D. E. Kelleher and D. R. Paquette, "Detailed Study of the Stark Broadening 

of Balmer Lines in a High-Density Plasma", Physical Review A 6, no.3, 1132 (1972). 
 
[174] Wilks, S. et al., "Beam Loading in Plasma Waves", IEEE Transactions on Plasma Science 

15, no.2, 210 (1987). 
 
[175] Wilson, I., "The compact linear collider CLIC", Physics Reports 403-404, 365 (2004). 



 
142 

 

 
[176] Ya et al., "Wake field excitation in plasma by a train of relativistic electron bunches", 

Plasma Physics Reports 20, no.7, 606 (1994). 
 
[177] Yakimenko, V. et al., "Generation and Characterization of the Microbunched Beams in 

the Range from 0.3 to 500 Femtoseconds", in 28th International Free Electron Laser 
Conference  (BESSY, 2006), pp. 481. 

 
[178] Yakimenko, V. and R. Ischebeck, "Summary Report of Working Group 4: e-Beam Driven 

Accelerators", in 12th Advanced Accelerator Concepts Workshop  (AIP, Lake Geneva, 
Wisconsin (USA), 2006), pp. 158. 

 
[179] Yakimenko, V. et al., "Cohesive Acceleration and Focusing of Relativistic Electrons in 

Overdense Plasma", Physical Review Letters 91, no.1, 014802 (2003). 
 
[180] Zeng, X. et al., "Laser-induced shockwave propagation from ablation in a cavity", Applied 

Physics Letters 88, no.6, 061502 (2006). 
 
[181] Zoler, D. and R. Alimi, "A proof of the need for consistent treatment in modelling of 

capillary ablative discharges", Journal of Physics D: Applied Physics 28, no.6, 1141 
(1995). 

 
 
 



 
143 

 

Appendix A  

PWFA Linear Theory 

A.1 Impulse Response of a Plasma 

In this section the electric field that is excited when a relativistic charged beam enters a plasma 

is derived. The analysis applies to linear theory, where the beam density 
bn  is much smaller that 

the plasma density pn , b pn n . Also, we will only deal with two dimensions in a system will 

cylindrical symmetry, so there is no azimuthal dependence and 0






.  

We start by writing Maxwell’s equations in a homogeneous linear medium: 
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 (73) 

Since in this regime the ion motion is negligible, b i

p e

n M

n m
 , we can assume static ions and only 

write down Newton’s second law of motion for the electrons: 

 e
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eE ev B
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 (74) 

Finally the equation of continuity for the electrons is included: 
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The electron momentum, the charge density and the current density are defined as follows for 

an electron beam: 
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There are 10 unknowns in the above 12 equations: , , ,e eE B v n
  

. There are 2 more equations than 

unknown variables because Gauss’s laws for the electric and magnetic fields can be derived 

from the other two Maxwell’s equations when they are combined with the continuity (or charge 

conservation) equation. 

The next step is to linearize the equations, assuming that the quantities that are 

examined are just small perturbations over the initial state values (at 0t  ). The unknowns can 

be written as follows: 
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 (77) 

There are several items to note here. The plasma starts from a neutral state, so the initial 

density of electrons is equal to the initial density of ions. Also, since the plasma is assumed 

homogeneous there is no initial net electric or magnetic field. In addition, the plasma electrons 
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start out motionless (cold) so there is no initial velocity, and the ions are static so there is no 

density perturbation assigned to them. Lastly, the beam is assumed to move close to the speed 

to light in the z-direction, i.e. ˆ
bv cz

 . The equations now become in the nonrelativistic limit: 
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By ignoring the second order terms (the products of two first order terms) because these first 

order perturbations are assumed to be very small compared to the initial values (
1 0n n , etc), 

the equations become 
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The first goal now is just to solve for the density perturbation. Taking the time derivative of the 

continuity equation and then replacing from the equation of motion: 
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The electric field can be replaced from Gauss’s law to yield: 
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 (81) 

A.2 The Density Perturbation Response 

Let’s now assume as an input beam a delta function, a single electron at a specific point R


in 

time and space moving at a relativistic speed ˆ
bv cz

  into the plasma: 
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since the beam is dependent not simply on the time variable t  but on the variable z ct , we 

expect all the parameters in the system to by finally dependent only on z ct   .  This means 

that the time derivative 
t




 can be replaced with c







. 

Equation (81) now becomes 
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Where 
p

pk
c


  is the plasma wavenumber. In order to solve this differential equation the 

Laplace transform is applied (for the   variable): 
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This is the density perturbation impulse response of the plasma. Here  U   is the Heaviside 

step function (zero for 0  , unity for 0  , and equal to ½ for 0  ). The total density 

perturbation for a general beam density      ,b b bn r n r n    is found by integrating the 

above result (Green’s function) over the whole space: 
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Where in the last step we have defined the wakefield function (for reasons that will become 

apparent later) as 
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A.3 The Electric Field Perturbation Response 

Now that the density perturbation is known, the response of the electric can be calculated. First, 

take the curl of Faraday’s law: 
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 (87) 

Now insert the curl of the magnetic field from Faraday’s law and the div of the electric field from 

Gauss’s law: 
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 (88) 

As before, since everything is a function of z ct   , the derivatives with respect to time can 

be replaced as c
t 

 
 

 
. Then 
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The only unknown here (other that the electric field) is the electron velocity perturbation 
1v


, 

which can be simply replaced from Newton’s law of motion: 1
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Now consider that the   operator can be written as 
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 (91) 

However the variable z  is not independent but we have written it as a function of  . Therefore 

since z ct    we can just replace 
z 

 


 
. The operators become 
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Now the quantities on the right hand side become 
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Now substitute back at the electric field wave equation and separate the two vector 

components, one for the radial direction and one for the longitudinal: 
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The last equation for the longitudinal electric field can be easily solved in the   dimension but 

it also requires to be solved in the r dimension, which will yield the field off-axis. The Green’s 

function response  ;G r r
 

 to an impulse function  r


 in cylindrical coordinates is the 

solution to the equation 
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 (95) 

This solution can written as 
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0K  is the modified Bessel function of zeroth order. The longitudinal electric field can be written 

as 

        2

1 0

0

, cos
2

z p p p

e
E r k K k r k U  


   (97) 

This is the longitudinal electric field response of the plasma to an impulse function. It can be 

divided into two components, a parallel one and a transverse one, namely  E   and  R r  

such that      1 ,zE r E R r   . This yields 
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It is interesting to observe that while the plasma density perturbation starts from 0 and it is 

proportional to a sinusoid, the electric field perturbation is actually discontinuous at the starting 

point as it has a value of ½ of its maximum value and then it evolves as a cosine, being always 90 

degrees out of phase compared to the plasma density wave. 

Now assume a general beam density distribution of the type 

      , ,b b bn r n n r      (99) 

The perpendicular beam density is assumed unitless with peak amplitude of 1, and therefore the 

SI units of the longitudinal beam density are m-3. Then the total electric field is found simply by 

integrating Green’s function over the whole beam distribution in space [92, 116]: 
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Here  min ,r r r
  and  max ,r r r

 . 

A.4 Bi-Gaussian Bunches 

Since the Gaussian is the most common type of beam density shape, it shall be analyzed 

explicitly. For a transversely Gaussian bunch profile  
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component of the longitudinal wakefield is 
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The total number of particles in this bunch is  
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Near the center of the Gaussian bunch the field needs to be evaluated numerically. Near the tail 

of the bunch though it can be calculated analytically: 
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Or, in normalized units 
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Then the total on-axis wakefield left behind a bi-Gaussian electron bunch is 
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Or, in normalized units 
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The absolute wakefield amplitude is increased as z   and r   and N   (for a constant 

plasma density). Finally, let’s investigate the dependence of the plasma wake amplitude on the 

plasma density, or equivalently the plasma wavenumber pk . There are two questions to be 

answered. First, given all other parameters constant, what is the optimal plasma density? 

Second, what is the wake that can be obtained for that plasma density? 
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A.5 Optimal Plasma Density for bi-Gaussian Electron Drivers 

In the 1D limit, one can straightforwardly find the plasma density for which (106) is maximized 

for a fixed density perturbation 
0 0/bn n : it is 2p zk   . The maximum normalized wake 

amplitude then is given by 
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If the bunch shaped is fixed instead, equation (105) indicates that the absolute wakefield 

amplitude increases as the plasma density decreases, or pk  .  This will be true as long as the 

1D linear regime condition is satisfied, i.e. 
0 0bn n  and 1p rk   . Therefore, while in that 

regime, the optimum plasma density is the minimum. 

When the 2D effects are included, in order to get the plasma density that optimizes the 

wake amplitude for a fixed bi-Gaussian bunch, the derivative of the wake amplitude expression 

(107) with respect to pk  needs to be taken and set to zero: 
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In this last step we used the expression for the derivative of the exponential integral, 
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One would have to solve this nonlinear equation numerically in order to derive the optimum 

plasma density. However, it is found that in most cases the exact solution can be approximated 

simply by 
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This is the 1D result. It is true for example for small aspect ratio bunches where 

1r
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   and the second term on the right hand side of (110) can be ignored. 

When this aspect ratio is larger than about 0.1, the exact optimal pk  differs from the simplified 

optimal pk  by a large factor; however, the approximate maximum wake amplitude never differs 

more than 20% from the exact value even if the approximate expression 2p zk    is always 

used [116]. This is due to the slowly-varying dependence of the wake amplitude on p rk  . 

The wakefield amplitude for the semi-optimal condition 2p zk    (using eq.(108)) is 
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In normalized units this reads 

 
 

2

2
max 2 2

1 0

2 2

0

0,
1.3 0,

r

zz z b r r

p z z

eE r n
e

mc n



   

  

    
    

  


  (113) 

This indicates that other than the slowly-varying monotonically decreasing term in the brackets, 

the optimum absolute wakefield amplitude will scale as 
21/ z  if the plasma density is adjusted 

accordingly for a given z .  
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The above results for bi-Gaussian drivers in the linear regime can be summarized as 

follows: 
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 (114) 

And in SI units: 
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The convergence of the above three expressions are compared in the following Figure. 
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Figure A.1: Comparisons of the maximum wakefield expressions as a function of the beam aspect ratio for 

bi-Gaussian bunches, when the plasma density is adjusted such that 2p zk   . 
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Appendix B  

Upper Limits to the Transformer 

Ratio 

B.1 Symmetric Bunches 

It can be proved under very general assumptions that the upper limit to the transformer ratio 

for a symmetric bunch inside a single mode lossless medium is equal to 2 [10]. Specifically for 

the plasma wakefield case one can use the results for a linear wakefield excitation. Recollect 

that the longitudinal wakefield excited from a drive bunch distribution in the 1D linear regime is 

(from eq.(100)) 
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The wakefield at a point   inside the bunch with distribution  bn   is 
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Assuming a symmetric bunch around 0  , at the center of the bunch the wakefield is 
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If the wakefield at the center of the bunch is also the peak decelerating wakefield then

 max 0zE E  . If this is not the case, then it will be larger than this value and  max 0zE E  . 

However in any case  max 0zE E  . Also, the wakefield at a point   after the bunch is 

(assuming that the bunch distribution is localized around ξ=0 without extending too far): 
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Assuming now that the bunch distribution is symmetric (and the integral is done symmetrically 

around the bunch), then the second integral in the above expression is 0 because an odd 

function is integrated symmetrically (the bunch is an even function multiplied by the sinusoidal 

which is an odd function, resulting in an odd function). Then the maximum value is reached 

when cos 1pk    , yielding a result for the maximum accelerating wakefield: 
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Therefore we conclude that if the peak of the decelerating wakefield happens to be at the 

center of a symmetric bunch then the transformer ratio peaks at 2; in any other case it will be 

less than 2. 
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B.2 Asymmetric Bunches 

The transformer ratio can be increased beyond 2 if a proper asymmetric bunch is utilized [9, 

104]. The maximum possible transformer ratio (along with the beam to plasma energy transfer 

efficiency) is achieved when the retarding wakefield inside the bunch is constant. The bunch 

distribution that satisfies this condition can be calculated analytically as follows. 
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Here  U   is the Heaviside step function. It is assumed that there is a constant wakefield that 

starts at 0  . The longitudinal beam distribution  bn   can be solved with the use of the 

Laplace Transform. By taking the Laplace Transform of both sides and applying the property that 

the Laplace Transform of a convolution integral is just the product of the Laplace Transforms of 

the individual functions that are convolved, we get: 
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 (119) 

So, mathematically the optimal bunch distribution is linear ramp with a delta function at the 

beginning (required to jump-start the wakefield that remains constant thereafter). The exact 

bunch distribution and retarding wake can be calculated if we specify a linear ramp with 1N  
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particles and length pk L M  , and a delta function with 
2N particles. This can be written as 

(for a transversely Gaussian profile): 

     

2

2

2 1

22 1

2 2 2

/ 2
,

2 / 2
r

b

b b

b

r

b

nr r

n n

n

N L
n r rect e

L L


   

 




 
 
 
   

      
  

 
 
 

 



 


 (120) 

The wakefield excited inside this bunch is 
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This wake is constant if  
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The wake excited after the bunch is 
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Therefore, the optimum transformer ratio is then 
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This is the ultimate limit for the transformer ratio in the linear regime. 
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Appendix C  

Coherent Transition Radiation from 

an Electron Bunch 

In the following pages we will attempt to calculate theoretically the CTR from an electron bunch 

when going through a metal foil. There are two independent effects that take place in such a 

phenomenon. First, we will calculate the energy radiated from a single electron when it hits a 

metal foil (transition radiation). Second, we will calculate how this radiation is altered by the 

presence of the other electrons nearby (coherent radiation). A more complete description can 

be found in [110]. 

C.1 Transition Radiation from a Single Electron 

The problem of the radiation emitted from an electron approaching normally a perfectly 

conducting boundary is handled using the method of images: the perfect conductor is replaced 

with another electron of equal and opposite charge (i.e., a positron) approaching the first 

electron from the opposite direction with the same initial speed, such that the two particles are 

to collide exactly where the boundary was. A significant assumption here is that the two 

particles decelerate until they meet at the boundary with 0 speed each. Transition radiation will 

be emitted from both electrons as they decelerate to reach standstill.  

The energy radiated from a single charged particle during a collision is given by the 

following formula [77]: 
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The quantity on the left has units of energy per steradian per frequency, in CGS units. /v c 
 

  

is the speed of the electron, n̂  is the direction of radiation at frequency  , and r


 is the 

position of the electron at time t . Since the time   it takes for en electron to cross the 

boundary is small, we let 1   which will set the exponent inside the integral to go to 0. This 

is valid if the radiation of interest is at relatively low frequencies. The integral then becomes 
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Here  the positron radiation term was also added. Carrying out the calculation 
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So this is the radiation from the transition of the electron approaching perpendicularly a perfect 

conductor. Note that the exact same expression holds true for the case of an electron emerging 

from a perfect conductor into the vacuum. Also, observe that due to the low-frequency 

assumption there is no dependence on frequency in this formula. The peak of the radiation is 
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1
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 . More general expressions are available for general 

cases of oblique incidence [110]. 
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C.2 Coherent Radiation from N electrons 

Let us assume N  electrons, distributed in space. Each electron is identified by the number j , so 

1,2,...,j N . Let the center of this electron bunch to be at the origin of the axes, that the 

observation point is located at ˆR RR


, and that each electron j  is located at a distance 

ˆ
j j jr r r


 from the center of the bunch. Hence the distance between an electron j and the 

observation point is ˆ
j j j jx R r x n  
 

. 

Now, assume that all the electrons are moving at exactly the same speed. This motion can be 

broken down to a set of frequencies. The field generated by an electron j  at the frequency   is 

 jE k


, where k
c


 . The field observed at the observation point which is jx


 away will 

propagate with a wavevector ˆ
j jk kn


, so its value at that point will be 
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 Assuming the far-field approximation, i.e. jR r ,then ˆˆ
jn R  and    j eE k E k

 
 , which 

means that the electric field amplitude is same as if the electron is located at the center of the 

bunch. The field now becomes 
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The total field intensity  totalI k in Watts per m2 generated from all the electrons at that 

observation point for that frequency k  is 
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Here    
2

0

2
e e

c
I k E k





 is the field intensity generated from a single electron. If all the 

electrons were located in the same point in space, then the phase information would disappear 

and this would yield a factor 2N  (it’s just like having a charge e N  there, which would create 

an electric field N  times stronger and hence intensity 2N  times stronger). However the 

distribution of the electrons along the bunch will alter this simple dependence. 
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In order to proceed further, one more assumption needs to be made. Since the number of 

electrons in each bunch is typically large, we could replace the summations over all the 

electrons with integrals over a continuous electron distribution. So, let’s assume that the 

number of electrons in a volume element 3d r  at a distance r


 from the center of the bunch is 

  3N S r d r


. Then the function  S r


 is just a probability distribution such that   3 1S r d r 


. 

Therefore, the discrete summation can be approximated by the integral (after some short 

calculations)  
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f is traditionally noted as the bunch form factor, a quantity that relates the bunch distribution 

with the phases of the electrons inside the bunch. For 0k   (low frequencies, high 

wavelengths) the factor is close to its maximum value, 1. In this case    20total eI k N I k  . 

Here the electrons act in harmony, and they produce the same intensity as if they all were 
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perfectly located at the center of the bunch. Hence in low frequencies the actual distribution of 

electrons doesn’t matter much, because the phase factor is so tiny that it doesn’t affect the 

integral. This is the coherent radiation. 

For k   (high frequencies, low wavelengths) the phase will change with infinitely big 

steps. Even around a small dr  we will ideally have all phases adding up in the integral, and these 

will eventually cancel out. Hence at this case where the phases are random the bunch form 

factor will approach 0 and    total eI k N I k  . Here the electrons act completely at 

random, and they produce a total electric field that is only the square root of the electric field 

they produce when they act in harmony, and hence now the intensity scales linearly with the 

number of electrons and the charge of the bunch. This is the incoherent radiation. 

C.3 The Bunch Form Factor in a more Specific Case 

In order to evaluate the bunch form factor for a general frequency, let 

    

2

22

2

cos1
,

sin2

x
S r e Z z

y









 

 







  
 

  


 (133) 

This means that we will have a cylindrical coordinate system to describe the transverse 

dependence of the bunch which is assumed Gaussian. Since  ˆ sin cos cosR r z          


, 

then the BFF reads 
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The inside integral can be calculated as follows: 
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Then using also the identity  
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  [4], the bunch form factor can 

be written as 
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It is clearly seen that the bunch form factor is directly proportional to the squared amplitude of 

the Fourier transform of the longitudinal distribution of the bunch. Thus, the geometrical 

characteristics of the electron distribution are mapped onto the spectrum of the emitted 

radiation. 

C.4 CTR Interferometry 

Coherent Transition Radiation is emitted when an electron beam hits a foil, and it is emitted 

near a wavelength equal to the dimensions of the beam itself. Since the detectors typically are 

not capable of resolving the picoseconds-long CTR signal in time, interferometry can be used to 

retrieve time-dependent information of the signal. The electric field is added to a slightly 

delayed in time version of the same electric field, and the intensity sum is observed, usually time 

integrated. The output yields information of the shape of the beam, and it is especially useful 

when more than one bunch of electrons are present. 

Let’s start with the electric field of the CTR: ( )E t . This is a spatially integrated time-

dependent magnitude of the full field  , , ,E r z t


. At the exit of the interferometer, this field is 
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added to a shifted in time version of the field, ( )E t  . Here   is the shift in time, which is 

controlled by adjusting the lengths of the arms of the interferometer. Negative values of   

imply that the second field comes earlier in time than the first, while positive values correspond 

to an electric field that comes later in time than the original. For a beam that is about 1 mm 

long, the time shift should be controlled in the 1 mm range, which is about 3 ps. At the exit of 

the interferometer the total field is ( ) ( )E t E t   .  

This field will hit a CTR detector, the same one that was used to measure the plain CTR. The 

detector will yield a time-integrated value of the intensity of the input fields, which will be 

proportional to 
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Where  
2

0( )E t dt I





 . Hence the output will be a constant background enhanced by the 

autocorrelation integral of the beam with itself. For a single Gaussian bunch, i.e. 
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The recorded interferometer CTR signal is 
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Here 
2

0 0 zI E  . It is therefore another Gaussian, only with a standard deviation that is 2  

times larger now than the standard deviation of the Gaussian bunch itself. The pattern has a 

minimum at 02I  and it reaches double this background value at the best case ( 0  ) which is 

when the bunch overlaps with itself. By measuring the width of the CTR Gaussian, one can 
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therefore measure the width of the initial bunch. An absolute measurement of the intensity will 

also yield the strength of the bunch. 

Let’s assume now that there are two distinct electron bunches that comprise the beam, 

each at different spots along time and with different amplitudes. We have 
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The total signal recorder at the detector will be (after some analytical manipulations) 
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 (141) 

There are 3 groups of terms in the result. The first group consists of the first 3 terms, and it is 

just the constant background radiation interference. The second group consists of the next 2 

terms, which are the self-correlation terms for each bunch. The third group consists of the last 2 

terms, and they are two satellite lobes, each corresponding to a cross term between the first 

and second bunch and vice versa. It is clear that the location and shape of each satellite lobe can 

provide information for both bunches. 
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Appendix D  

ThemOsiris Simulation Code 

The fully explicit particle-in-cell code OSIRIS [71] is widely used for calculating the beam-plasma 

and laser-plasma interactions in a plasma accelerator. However, one of the drawbacks of the 

code is that only a single plasma density can be simulated at any given run. For the multibunch 

ideas and experiments presented in this dissertation though, it is desirable to get a quick answer 

regarding the evolution of the wakefield amplitude with respect to the phase of the bunches for 

different plasma densities. For this reason a simulation code was developed that solves for the 

wakefield amplitude given an input beam profile. The mathematical analysis behind the code is 

briefly presented in Section D.1, while Section D.2 offers an example of an implementation of 

the code in Matlab. This code was used to generate most of the non-OSIRIS simulation figures in 

the work presented in this dissertation. 

D.1 Analytical Formulation 

The starting point are Maxwell’s equations in a linear medium, explicitly written in equation (73)

. Instead of assuming linear approximation, we solve the equations in the fully relativistic 

nonlinear 1D regime, along with the relativistic Newton’s law of motion, equation (74), and the 

continuity condition for electrons, equation (75). Therefore, assuming / 0r    (and thus no 

magnetic field) and dependence on the variable z ct   , then ˆ /z d d  


 and we get 
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The electric field E  and the electron velocity 
ev  can be substituted in the above system of 

equations. After some analytical manipulation, a differential equation for the total electron 

density 
en  as a function of the length   can be written as follows: 
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This equation is equivalent to the one derived by Rosenzweig in [146]. The electric field E is 

then found from 
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 (144) 

The above equations intrinsically include nonlinear effects, such as the sawtooth-shaped 

wakefields and the frequency shifts that emerge in the nonlinear regime. However the 

equations are only valid as long as the plasma can be treated as a fluid, and this does not always 

hold in the blowout regime due to particle trajectory crossings [116]. Still, these equations can 

be used to obtain rough wakefield amplitudes and bunch phasing in the mildly nonlinear regime. 

Note that in the weakly linear regime we have 
0/ 1en n   and by Taylor-expanding 

en  

around 
0n  the above equations are approximated by 
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These are the results of the linear wakefield theory that was presented in Appendix A.1 . In 

order to obtain a wakefield amplitude that includes 2D transverse effects, the amplitude found 

through equation (144) can be multiplied (for transversely Gaussian bunches) by  0R which is 

defined in equation (9). 

 A comparison between the outputs of ThemOsiris and OSIRIS is presented in Figure D. 

An implementation of ThemOsiris in Matlab was written. The input beam electron density 

 
Figure D.1: Comparison between OSIRIS and ThemOsiris codes for the same set of input parameters. 
Three electron bunches with peak beam density of 2×1012 cm-3 are fed into a 5×1016 cm-3 plasma. The 
deviation between the codes is less than 5% in terms of the wakefield evolution, while ThemOsiris is at 
least 1,000 times faster. 
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consists of 3 bunches, the last one separated by many plasma wavelengths. We observe that as 

benchmarked by OSIRIS the code correctly predicts the wakefield amplitude with less than 5% 

error. Being ≈1000 times faster than OSIRIS, the code can be used to do quick plasma density 

scans and/or to determine the proper position of the bunches. 

In the second revision of this code, the ability to generate the beam energy spectra at the 

exit of the plasma was added (including intrinsic energy spread). The code is limited to slow 

variation of the initial neutral plasma density (on a scale longer than the beam length) and 

assumes that the beam does not evolve with time. 

D.2 Sample Code 

An example of ThemOsiris code than can run in Matlab is given below. The code outputs the 

wakefield vs. time as well as the predicted energy spectra of given bunches. The functions that 

are called are also explicitly written below. 

 
% ThemOsiris 
% This is a code that will calculate the phase space and energy gain of  
% 2D  bunches  into a high density plasma, used for our Brookhaven 
% ATF experiment... 
 
clear all; 
% Useful physical constants 
c = 3e8; 
e = 1.6e-19; 
m = 9.1e-31; 
 
% Plasma normalization parameters 
lamda0 = 250e-6;                % Reference wavelength for normalizations 
k0 = 2*pi/lamda0;               % Reference wavevector 
n0 = 1e-6*lamdap2n0(lamda0);    % Reference plasma density in cm^-3 
wp = 2*pi*c/lamda0;             % Reference plasma frequency in Hz 
 
 
% INPUT DECK!!! 
%-------------------------------------------------------------------------- 
%-------------------------------------------------------------------------- 
 
% Plasma Density 
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%--------------- 
np=1.79e16;                        % in cm^-3 
 
% Input parameters for the 2 bunches 
%----------------------------------- 
 
% Energy of the bunches in MeV 
Energy0 = [56 57 58 59 60 61];               
 
% Total Charge for drive bunches [pC] 
qt=250; 
 
% How many drive bunches? 
Nb=4; 
 
% How much of the charge is *not* blocked? [1=none] 
b=0.5; 
 
% Charge of each bunch in pC 
% (the drive bunch has half the charge) 
q = b*[qt/Nb*1 qt/Nb*3 qt/Nb*5 qt/Nb*7 qt/Nb*0.001 qt/4/2];           
 
% Bunch seperation distance in microns 
% (relates to plasma density) 
sep = n02lamdap(np)*1e6; 
 
% Position of each bunch in sec 
 %mean = [250 250+1.5*sep 250+3*sep 250+4.5*sep 1250 1625+125]*1e-6/c; 
 mean = [250 250+1.5*sep 250+2*1.5*sep 250+3*1.5*sep 250+6*sep 1562.5]*1e-6/c; 
 
% sigma_z of each bunch in sec 
% (such that fraction b goes through) 
sigma_z = b/2*[sep sep sep sep sep sep/4/b]*1e-6/c; 
 
% Spot size of each bunch in microns 
sigma_r  = 100*[1 1 1 1 1 1]; 
 
 
% Define the spatial grid for the simulation 
%------------------------------------------- 
zmin = 0.0*k0*1e-3;             % Start of simulation box in mm 
zmax = 20.0*k0*1e-3;            % End of simulation box in mm 
N = 100;                        % Grid number of points for simulation box 
z = linspace(zmin,zmax,N);      % The grid in propagation direction 
 
%-------------------------------------------------------------------------- 
%-------------------------------------------------------------------------- 
 
% Solve for the wakefield generated from the above bunch distribution 
% tspan in ps, E in MeV/m, nb in m^-3 
[tspan, E, nb] = multi_gaus_wake(np, mean, sigma_z, sigma_r, q); 
 
% INITIALIZE PARTICLE POSITION AND MOMENTUM!!! 
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%-------------------------------------------------------------------------- 
%-------------------------------------------------------------------------- 
 
NN=length(tspan); 
% Calculate the beam densities seperately 
 
 
    for i=1:NN  
        nb1(i) = square(tspan(i)*1e-12, mean(1), sigma_z(1), 3, q(1), 
sigma_r(1)); 
        nb2(i) = square(tspan(i)*1e-12, mean(2), sigma_z(2), 3, q(2), 
sigma_r(2)); 
        nb3(i) = square(tspan(i)*1e-12, mean(3), sigma_z(3), 3, q(3), 
sigma_r(3)); 
        nb4(i) = square(tspan(i)*1e-12, mean(4), sigma_z(4), 3, q(4), 
sigma_r(4)); 
        nb5(i) = square(tspan(i)*1e-12, mean(5), sigma_z(5), 3, q(5), 
sigma_r(5)); 
        nb6(i) = square(tspan(i)*1e-12, mean(6), sigma_z(6), 3, q(6), 
sigma_r(6)); 
    end 
 
% How many particles do you want in the simulation total??? 
Np  = 25000*length(q(q>1)); 
 
    Np1 = q(1)/sum(q)*Np;    % Number of particles in each bunch 
    Np2 = q(2)/sum(q)*Np;    % Number of particles in each bunch 
    Np3 = q(3)/sum(q)*Np;    % Number of particles in each bunch 
    Np4 = q(4)/sum(q)*Np;    % Number of particles in each bunch 
    Np5 = q(5)/sum(q)*Np;    % Number of particles in each bunch 
    Np6 = q(6)/sum(q)*Np;    % Number of particles in each bunch 
 
% Renormalize density so that we have this number of particles 
 
    nb1 = nb1.*Np1.*length(nb1)/(tspan(end)-tspan(1))/sum(nb1); 
    nb2 = nb2.*Np2.*length(nb2)/(tspan(end)-tspan(1))/sum(nb2); 
    nb3 = nb3.*Np3.*length(nb3)/(tspan(end)-tspan(1))/sum(nb3); 
    nb4 = nb4.*Np4.*length(nb4)/(tspan(end)-tspan(1))/sum(nb4); 
    nb5 = nb5.*Np5.*length(nb5)/(tspan(end)-tspan(1))/sum(nb5); 
    nb6 = nb6.*Np6.*length(nb6)/(tspan(end)-tspan(1))/sum(nb6); 
 
% Create the initial particle location matrix 
%-------------------------------------------- 
dz = tspan(2)-tspan(1);                                 % Elementary step 
ze1=[]; ze2=[]; ze3=[]; ze4=[]; ze5=[]; ze6=[];                                      
% Initialize the particles location matrix 
 
    for i=2:length(tspan);                                  % for every time 
interval dz (dt) 
 
    num_par1 = round(nb1(i)*dz);                        % This is how many 
particles are in that interval 
    num_par2 = round(nb2(i)*dz); 
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    num_par3 = round(nb3(i)*dz); 
    num_par4 = round(nb4(i)*dz); 
    num_par5 = round(nb5(i)*dz); 
    num_par6 = round(nb6(i)*dz); 
     
    tempz1 = linspace(tspan(i-1),tspan(i),num_par1);    % Evenly distribute 
the particles over that interval 
    tempz2 = linspace(tspan(i-1),tspan(i),num_par2); 
    tempz3 = linspace(tspan(i-1),tspan(i),num_par3); 
    tempz4 = linspace(tspan(i-1),tspan(i),num_par4); 
    tempz5 = linspace(tspan(i-1),tspan(i),num_par5); 
    tempz6 = linspace(tspan(i-1),tspan(i),num_par6); 
     
    tempz1 = tempz1(2:end);                             % Ignore the first 
overlapping particle 
    tempz2 = tempz2(2:end); 
    tempz3 = tempz3(2:end); 
    tempz4 = tempz4(2:end); 
    tempz5 = tempz5(2:end); 
    tempz6 = tempz6(2:end); 
     
    ze1 = [ze1 tempz1];                                 % Add those particles 
to the location matrix 
    ze2 = [ze2 tempz2]; 
    ze3 = [ze3 tempz3]; 
    ze4 = [ze4 tempz4]; 
    ze5 = [ze5 tempz5]; 
    ze6 = [ze6 tempz6]; 
     
    end 
 
     
Np1=length(ze1);                    % actual number of particles in beam 1 
Np2=length(ze2);                    % actual number of particles in beam 2 
Np3=length(ze3);  
Np4=length(ze4); 
Np5=length(ze5); 
Np6=length(ze6); 
 
Np = Np1+Np2+Np3+Np4+Np5+Np6;                       % Total actual number of 
particles 
ze = [ze1 ze2 ze3 ze4 ze5 ze6];                     % Merging the two beams 
together! 
% Now, the matrix ze contains the positions of the particles with respect 
% to the beggining (head) of the beam 
 
 
% Create the initial particle momentum matrix 
%-------------------------------------------- 
s_th=0.1;                                           % Thermal spread in MeV 
Energy1(1:Np1) = Energy0(1) + s_th*randn(1,Np1);     % Energy of the first 
beam particles 
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Energy2(1:Np2) = Energy0(2) + s_th*randn(1,Np2);     % Energy of the second 
beam particles 
Energy3(1:Np3) = Energy0(3) + s_th*randn(1,Np3); 
Energy4(1:Np4) = Energy0(4) + s_th*randn(1,Np4); 
Energy5(1:Np5) = Energy0(5) + s_th*randn(1,Np5); 
Energy6(1:Np6) = Energy0(6) + s_th*randn(1,Np6); 
Energy = [Energy1 Energy2 Energy3 Energy4 Energy5 Energy6];                         
% Merge the two energy distributions 
 
 
% Modify the start and end of simulation box is necessary 
loc_z_start = 1; 
loc_z_final = length(z); 
z_start = z(loc_z_start); 
z_final = z(loc_z_final); 
 
%  Create the matrix that holds the momentums of the particles 
p = zeros(loc_z_final-loc_z_start+1,Np); 
% Initialize the beam electrons at their initial momentum[normalized units] 
p(1,:) = sqrt((1+Energy(:)/0.511875).^2-1); 
% Now matrix p holds the momentums of all the Np particles of both bunches 
 
% Find each particle location in tspan 
par_loc=round(1+((NN-1)/(tspan(end)-tspan(1)))*ze);  
par_loc(par_loc>5000)=5000;     % Ignore further away particles 
% This can be done because tspan(i)=1000/(NN-1)*(i-1)=linspace(0,1000,N); 
 
%-------------------------------------------------------------------------- 
%-------------------------------------------------------------------------- 
 
 
% Main loop for pushing particles 
%-------------------------------------------------------------------------- 
for i=loc_z_start:loc_z_final-1       % For each step along z 
     
    % Calculate next step for the beam 
    dz = z(i+1)-z(i); 
     
    for j=1:Np      % For each particle along the beam 
       % And now the main push! 
        p(i+1-loc_z_start+1,j)= p(i-loc_z_start+1,j) +... 
            dz/k0*E(par_loc(j))*1e6*e/c^2/m; 
    end 
end 
 
% Translate momentum to energy in MeV 
Energy = 0.511875.*(sqrt(p.^2+1)-1); 
 
% Calculate Transformer Ratio 
% ------------------------------------------------------------------------- 
% Number of driving bunches 
Nd = length(q(q>1))-1; 
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for i=1:Nd 
    % Extend of bunch region in psec 
    L_low  = (mean(i)-sigma_z(i))*1e12; 
    L_high = (mean(i)+sigma_z(i))*1e12; 
    t_low  = length(tspan(tspan<L_low));  % Position in tspan 
    t_high = length(tspan(tspan<L_high)); % Position in tspan 
    % Maximum decelerating field inside that bunch 
    Em(i) = abs(min(E(t_low:t_high))); 
end 
% Maximum decelerating field inside the drive bunches 
Emin = max(Em); 
 
% Up until the beginning of the drive bunch 
Lb = (mean(end)-sigma_z(end))*1e12; 
tb = length(tspan(tspan<Lb)); % Position in tspan 
% Maximum accelerating field after the drive bunches 
Emax = max(E(t_high:tb)); 
 
% Transformer Ratio 
R = Emax/Emin; 
 
 
% PLOTTING PARAMETERS AND FUNCTIONS 
%-------------------------------------------------------------------------- 
%-------------------------------------------------------------------------- 
 
% Define Bin Centers 
E_min=53; 
E_max=68; 
M=linspace(E_min,E_max,200); 
 
figure('Position',[100 100 800 700]); 
 
subplot(2,1,1); 
hold on;  
area(tspan,(nb1+nb2+nb3+nb4+nb5)/max(nb1+nb2+nb3+nb4+nb5+nb6)*180,'facecolor',
'green'); 
area(tspan,nb6/max(nb1+nb2+nb3+nb4+nb5+nb6)*180,'Facecolor',[1 0.5 0]); 
plot(tspan,E,'linewidth',3); 
grid on; 
title(['Wakefield and Beam Density,  n_p=',num2str(np,'%2.1e'),'cm^-^3']) 
ylabel('Wakefield [MV/m]'); 
xlabel('Time [ps]'); 
axis([0 7 -200 200]); 
legend('Drive Beam','Witness','Wakefield','location','southwest'); 
text(5.1,175,['R=',num2str(R,'%1.3g')]); 
enhance_plot; 
 
[N0,X0] = hist(Energy(1,:),M); 
[N1,X1] = hist(Energy(end,1:Np1),M); 
[N2,X2] = hist(Energy(end,Np1+1:Np1+Np2),M); 
[N3,X3] = hist(Energy(end,Np1+Np2+1:Np1+Np2+Np3),M); 
[N4,X4] = hist(Energy(end,Np1+Np2+Np3+1:Np1+Np2+Np3+Np4),M); 
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[N5,X5] = hist(Energy(end,Np1+Np2+Np3+Np4+1:Np1+Np2+Np3+Np4+Np5),M); 
[N6,X6] = hist(Energy(end,Np1+Np2+Np3+Np4+Np5+1:Np1+Np2+Np3+Np4+Np5+Np6),M); 
%[N7,X7] = hist(Energy(end,Np1+Np2+Np3+Np4+Np5+Np6+1:end),M); 
[N ,X ] = hist(Energy(end,:),M); 
 
subplot(2,1,2); 
area(X1,N1,'Facecolor',[0 0 1]); 
 
title(['Energy Spectrum after ',num2str(zmax/k0*1000),'mm of plasma']); 
ylabel('# of sim particles'); 
xlabel('eBeam Energy [MeV]'); 
axis([E_min E_max 0 10000]); 
 
hold on;  
area(X2,N2,'Facecolor',[0 0 0.85]); 
area(X3,N3,'Facecolor',[0 0 0.60]); 
area(X4,N4,'Facecolor',[0 0 0.45]); 
area(X5,N5,'Facecolor',[0 0 0.30]); 
%area(X6,N6,'Facecolor',[0 0 0.15]); 
area(X6,N6,'Facecolor','magenta'); 
%area(X7,N7,'Facecolor','magenta'); 
plot(X0,N0,'black:'); 
plot(X,N,'r','linewidth',3); 
%legend('Bunch 1','Bunch 2','Bunch 3','Bunch 4','Bunch 5','Bunch 6','Witness 
Bunch','Initial Spectrum','Final Spectrum','location','northwest');  
enhance_plot; 

 

 

% Solves the 1D nonlinear plasma differential equation 
% np in cm^-3 
% sigma1, sigma2,in s 
% sigma_r in microns, charge in pC 
 
 
function [t, E, nb] = multi_gaus_wake(np, mean, sigma_z, sigma_r, charge) 
 
 
c=3e8; 
e=1.6e-19; 
m=9.1e-31; 
 
wp = 2*pi*c/n02lamdap(np);  % in s^-1 
 
tmin = 0;                                               % start field time in 
ps 
tmax = 12;                                              % End field time in ps 
NN=5000;                                                % Number of points for 
field 
tspan = linspace(tmin,tmax,NN);                         % in ps 
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tspan2 = tspan*1e-12*wp;                                % Time grid points in 
sim units 
 
 
options=odeset('reltol',1e-3,'abstol',1e-10);           % Solver Options 
 
    [t,v]=ode45(@rhs_multi_gaus,tspan2, [1, 0], options, mean, sigma_z, 
sigma_r, charge, np); 
    n = v(:,1);                                         % Electron Beam 
density 
    E = (v(:,2)./(2*n-1).^(1.5))';                      % Electric Field 
     
    sr=sigma_r(1)*1e-6*2*pi/n02lamdap(np);              % Normalized 
transverse radius 
    E = E*sr.^2/2*exp(sr.^2/2).*expint(sr.^2/2);        % Account for 
transverse effects 
 
t = t/wp*1e12;                                          % time in ps is 
returned 
 
for i=1:size(t,1) nb(i)=square(t(i)*1e-12, mean(1), sigma_z(1), 3, charge(1), 
sigma_r(1)) +... 
      square(t(i)*1e-12, mean(2), sigma_z(2), 3, charge(2), sigma_r(2)); end 
% nb is in m^-3 
t=t'; 
Enorm = m*c*wp/e; 
E2 = E*Enorm/1e6;    % Return E in MeV/m 
E=E2; 

 

 

% The function that contains the right hand side of the differential equation 
to be solved 
% np is plasma density in cm^-3 
 
 
function out = rhs_multi_gaus(t, y, mean, sigma_z, sigma_r, charge, np) 
 
n = y(1); 
u = y(2); 
 
wp = 1/n02lamdap(np)*2*pi*3e8;          % plasma frequency in s^-1 
np = np*1e6;                            % in m^-3 
 
% Calculate beam density 
for i=1:length(mean) 
    temp(i) = square(t/wp, mean(i), sigma_z(i), 3, charge(i), sigma_r(i)); 
end 
beam = sum(temp); 
 
out1 = u; 
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out2 = 3/(2*n-1)*u^2 - (2*n-1)^(1.5)*(n - 1 + beam/np); 
 
out = [out1; out2]; 

 

 

% Returns the value of the gaussian at point x in sec 
% mean is the mean value in sec 
% sigma is the Half Width of the square in sec 
% num is the numbers of sigmas on each side after which the gaussian is 0 
% charge is the charge in pC 
% sigma_r is the rms spot size in microns 
% 
% the output is the beam density at the point x in particles per m^3 
 
function out = square(x, mean, sigma_z, num, charge, sigma_r) 
 
charge = charge*1e-12; 
sigma_r = sigma_r*1e-6; 
e=1.6e-19; 
c=3e8; 
 
if abs(x-mean)<=sigma_z 
    out = charge/(e*2*pi*sigma_r^2*2*sigma_z*c); 
else out=0; 
end 

 

 

% lamdap in m, n0 in cm^-3 
 
function out = no2lamdap(n0) 
 
c=3e8; 
e=1.6e-19; 
m=9.1e-31; 
e0=8.85e-12; 
 
out = 2*pi*c/e*sqrt(e0*m/n0*1e-6); 

 

 

function enhance_plot(fontname,fontsize,linewid,markersiz) 
 
%  enhance_plot([fontname,fontsize]); 
% 
%  Function to enhance MATLAB's lousy text choices on plots.  Sets the 
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%  current figure's Xlabel, Ylabel, Title, and all Text on plots, plus 
%  the axes-labels to the "fontname" and "fontsize" input here where 
%  the defaults have been set to 'times' and 16. 
%  Also sets all plotted lines to "linewid" and all markers to size 
%  "markersiz".  The defaults are 2 and 8. 
% 
%  INPUTS:  fontname:   (Optional,DEF='TIMES') FontName string to use 
%                       MATLAB's ugly default is 'Helvetica' 
%           fontsize:   (Optional,DEF=16) FontSize integer to use 
%                       MATLAB's tiny default is 10 
%           linewid:    (Optional,DEF=2) LineWidth integer to use 
%                       MATLAB's skinny default is 0.5 
%           markersiz:  (Optional,DEF=8) MarkerSize integer to use 
%                       MATLAB's squinty default is 6 
%  for all inputs, if pass 0, use default 
% 
% Modifications 
%  19-Feb-2002 J. Nelson 
%       added linewid and markersiz to help squinting readers 
% 
%  20-Feb-2002 J. Nelson 
%       added check for legend.  If legend exists, increase the  
%           line and marker size, also increase the font to  
%           fontsize-2 (2 points smaller than title and labels) 
%====================================================================== 
 
if (~exist('fontname')|(fontname==0)) 
  fontname = 'times'; 
end 
if (~exist('fontsize')|(fontsize==0)) 
  fontsize = 16; 
end 
if (~exist('linewid')|(linewid==0)) 
  linewid=3; 
end 
if (~exist('markersiz')|(markersiz==0)) 
  markersiz = 8; 
end 
 
Hf=gcf; 
Ha=gca; 
Hx=get(Ha,'XLabel'); 
Hy=get(Ha,'YLabel'); 
Ht=get(Ha,'Title'); 
set(Ha,'LineWidth',.75); 
set(Hx,'fontname',fontname); 
set(Hx,'fontsize',fontsize); 
set(Hy,'fontname',fontname); 
set(Hy,'fontsize',fontsize); 
set(Ha,'fontname',fontname); 
set(Ha,'fontsize',fontsize); 
%set(Ha,'YaxisLocation','right') 
%set(Ha,'YaxisLocation','left') 
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set(Ht,'fontname',fontname); 
set(Ht,'fontsize',fontsize); 
set(Hy,'VerticalAlignment','bottom'); 
set(Hx,'VerticalAlignment','cap'); 
set(Ht,'VerticalAlignment','baseline'); 
Hn = get(Ha,'Children'); 
n = length(Hn); 
if n > 0 
  typ = get(Hn,'Type'); 
  for j = 1:n 
    if strcmp('text',typ(j,:)) 
      set(Hn(j),'fontname',fontname); 
      set(Hn(j),'fontsize',fontsize); 
    end 
    if strcmp('line',typ(j,:)) 
      set(Hn(j),'LineWidth',linewid); 
      set(Hn(j),'MarkerSize',markersiz); 
    end 
  end 
end 
legh=legend; 
Hn=get(legh,'Children'); 
n = length(Hn); 
if n > 0 
  typ = get(Hn,'Type'); 
  for j = 1:n 
    if strcmp('text',typ(j,:)) 
      set(Hn(j),'fontname',fontname); 
      set(Hn(j),'fontsize',fontsize-2); 
    end 
    if strcmp('line',typ(j,:)) 
      set(Hn(j),'LineWidth',linewid); 
      set(Hn(j),'MarkerSize',markersiz); 
    end 
  end 
end 
 
figure(Hf); 
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