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Motivation

Conformal maps for radial to parallel conversion of rays
Practical index maps for 3D dipoles
Dynamic analysis of arrays of dielectric resonators

Awesome Feynman quote



3 things you
(probably)
didn’t know about
James Clerk Maxwell
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Abstract

The efficient interaction of light with single quantum emitters (atoms, molecules and
semiconductor nanocrystals) depends critically on the modal overlap between the
incident and scattered photons. This usually calls for high-NA optics in order to match
the dipole radiation pattern of the emitter in free space. Such a requirement can be
alleviated if the emitter is embedded in a medium that shapes its radiation into a
collimated output beam. We here present simple-to-realize, all-dielectric and isotropic
transformation media that perform such a mode conversion.




Motivation and scope

* Excite a single quantum emitter with 100% probability using a sin
» Detect single photons emitted by quantum emitter emitter wit

These require....

* Increase the modal overlap between the incident beam and the electric-di
associated with the emitter’s resonant transition.

 ..still using standard limited-numerical-aperture optics.

We use transformation media to

* Achieve all the above in the bulk!

 Tailor the radiation pattern of quantum emitters into collimated beams
» Reach collection efficiencies > 99%




Conformal maps and the refractive index
landscapes \dW/3d2 |




Monopole radiation

Perfectly |
collimated beams .
toward x — -o0 3




Going 3D

2D-Dipole in vs
3D-Dipole
radiation in
exponential
medium

n(x) =e*



Going practical! .

3D-dipole radiation in
exponential medium
(unbounded vs
truncated on the
ow-index side)
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Cylindrical Dielectric Resonators

y (mm)
Refraction angle (Degree)
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Peng et al., PRL (2007)






Principle of Multipole Expansion

Incident Fields Currents Multipole Sources




Multipole Expansion
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Multipole Expressions
Isolated Resonators
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Fields — Multipoles Correlation
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Average Fields in Lattice




Average Fields in Lattice
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Homogenization Process




Effective Parameters
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Conclusions

* Practical, all-dielectric, isotropic transformation media are
proposed to be used for perfectly mode-matched
interaction of light with single quantum emitters.

* The designs are based on conformal mappings that
parallelize radial rays, in the strict or asymptotic sense, and
on their revolution-symmetric 3D counterparts.

* The proposed media are non-resonant and straightforward
to implement as smooth refractive index landscapes on a
monolithic dielectric platform with existing techniques.




R. Feynman, There's Plenty of Room at the Bottom
http://www.zyvex.com/nanotech/feynman.html

“I can 't see what exactly would happen,

but | can hardly doubt that when we have some
control of the arrangement of things in the

small scale,

we will get an enormously greater range of
possible properties that substances can have.”

1959



Thank You!
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